MATH 115: ELEMENTARY NUMBER THEORY HOMEWORKS # 1-2

JOHN VOIGHT

Homework #1 (Due June 28):

- §1.1: 4, 5, 8, 9;
 1.1A: A set S ⊂ ℝ is well-ordered if for every subset T ⊂ S, T has a least element.
 - (a) Show that the sets

$$\mathbb{Z}_{<0} = \{-1, -2, -3, \dots\}$$

and

$$\{1/n : n \in \mathbb{Z}_{>0}\} = \{1, 1/2, 1/3, 1/4, 1/5, \dots\}$$

are not well-ordered.

- (b) Show that if $S \subset \mathbb{R}$ is well-ordered, then S cannot contain a decreasing sequence of distinct real numbers.
- §1.4: 6, 7, 8, 17, 18, 36, 46
- §3.1: 6, 7, 10, 11, 16;

3.1A: Let $p_1 = 2, p_2 = 3, ...$ be the sequence of increasing primes, so that p_n is the *n*th prime. Is the number $P_n = p_1 p_2 \cdots p_n + 1$ itself always prime? **3.1B:** For $x \in \mathbb{R}_{>0}$, let s(x) denote the number of positive square integers not exceeding x, namely

$$s(x) = \#\{n^2 \le x : n \in \mathbb{Z}_{>0}\}$$

Show that $s(x) \sim \sqrt{x}$.

• §3.2: 5, 6, 8, 9, 16

Homework #2 (Due July 6, no class Monday, July 5):

• §3.3: 1(a), 1(d), 3(a), 3(d), 9;

3.3A: Let $f_0 = 1$, $f_1 = 1$, $f_{i+1} = f_i + f_{i-1}$ (for i > 0) be the sequence of Fibonacci numbers. Prove that $f_i < f_{i+2}/2$ for all i > 0. [Hint: Use Theorem 3.11 or prove it directly.]

3.3B: Assume that the limit

$$\alpha = \lim_{i \to \infty} \frac{f_{i+1}}{f_i}$$

exists. Show that $\alpha = (1 + \sqrt{5})/2$. [This explains where α comes from in Example 1.24.]

- §3.4: 2, 4(d), 7, 10, 19–22, 39, 44, 47
- §4.1: 4, 8, 16, 17, 20, 26
- §3.6: 1(a)–(c);
 3.6A: Find all integers x, y ∈ Z for which

$$x^2 = 4y^2 + 9.$$