MATH 115: ELEMENTARY NUMBER THEORY HOMEWORKS \# 1-2

JOHN VOIGHT

Homework \#1 (Due June 28):

- §1.1: 4, 5, 8, 9;
1.1A: A set $S \subset \mathbb{R}$ is well-ordered if for every subset $T \subset S, T$ has a least element.
(a) Show that the sets

$$
\mathbb{Z}_{<0}=\{-1,-2,-3, \ldots\}
$$

and

$$
\left\{1 / n: n \in \mathbb{Z}_{>0}\right\}=\{1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots\}
$$

are not well-ordered.
(b) Show that if $S \subset \mathbb{R}$ is well-ordered, then S cannot contain a decreasing sequence of distinct real numbers.

- $\S 1.4: 6,7,8,17,18,36,46$
- §3.1: 6, 7, 10, 11, 16;
3.1A: Let $p_{1}=2, p_{2}=3, \ldots$ be the sequence of increasing primes, so that p_{n} is the nth prime. Is the number $P_{n}=p_{1} p_{2} \cdots p_{n}+1$ itself always prime? 3.1B: For $x \in \mathbb{R}_{>0}$, let $s(x)$ denote the number of positive square integers not exceeding x, namely

$$
s(x)=\#\left\{n^{2} \leq x: n \in \mathbb{Z}_{>0}\right\}
$$

Show that $s(x) \sim \sqrt{x}$.

- §3.2: 5, 6, 8, 9, 16

Homework \#2 (Due July 6, no class Monday, July 5):

- §3.3: 1(a), 1(d), 3(a), 3(d), 9;
3.3A: Let $f_{0}=1, f_{1}=1, f_{i+1}=f_{i}+f_{i-1}($ for $i>0)$ be the sequence of Fibonacci numbers. Prove that $f_{i}<f_{i+2} / 2$ for all $i>0$. [Hint: Use Theorem 3.11 or prove it directly.]
3.3B: Assume that the limit

$$
\alpha=\lim _{i \rightarrow \infty} \frac{f_{i+1}}{f_{i}}
$$

exists. Show that $\alpha=(1+\sqrt{5}) / 2$. [This explains where α comes from in Example 1.24.]

- §3.4: $2,4(\mathrm{~d}), 7,10,19-22,39,44,47$
- §4.1: $4,8,16,17,20,26$
- §3.6: 1(a)-(c);
3.6A: Find all integers $x, y \in \mathbb{Z}$ for which

$$
x^{2}=4 y^{2}+9
$$

