FINAL EXAM MATH 115: NUMBER THEORY

Answer each question completely, and give sufficient justification and proof. Write neatly and in complete sentences!

Name	
Student ID	

Problem 1	$/ 10$
Problem 2	$/ 10$
Problem 3	$/ 15$
Problem 4	$/ 15$
Problem 5	$/ 15$
Problem 6	$/ 10$
Problem 7	$/ 15$
Problem 8 (Bonus)	$/ 10$
Total Score	$/ 90$

[^0]Problem 1. Let p be an odd prime and $k \in \mathbb{Z}_{>0}$. Show that the congruence

$$
x^{2} \equiv 1 \quad\left(\bmod p^{k}\right)
$$

has only the solutions $x \equiv \pm 1\left(\bmod p^{k}\right)$.

Problem 2. For which primes p does the congruence

$$
x^{2}+x+1 \equiv 0 \quad(\bmod p)
$$

have a solution?

Problem 3. The integer $n=p q=51809$ (with p and q prime) is used in an RSA cryptosystem. Through espionage, you find out that

$$
\sigma(n)=52416 .
$$

Find p and q.

Problem 4.
(a) Show that the arithmetic function $f(n)=(-1)^{n-1}$ is multiplicative.
(b) Let g be the arithmetic function

$$
g(n)=\sum_{d \mid n} \mu(d) f(d)
$$

Prove that $g(n)=0$ if n is not a power of 2 .

Problem 5. Let a be an odd prime, $b \in \mathbb{Z}_{>0}$, and suppose that $p=a^{2}+5 b^{2}$ is prime. Prove that a is a quadratic residue modulo p if and only if $p \equiv 1(\bmod 5)$.

Problem 6. Let $n \in \mathbb{Z}_{>1}$ be an integer with prime factorization

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}
$$

with p_{i} prime and $e_{i} \in \mathbb{Z}_{>0}$. Let

$$
m=\operatorname{lcm}\left(\phi\left(p_{1}^{e_{1}}\right), \phi\left(p_{2}^{e_{2}}\right), \ldots, \phi\left(p_{r}^{e_{r}}\right)\right)
$$

(a) Show that for every $a \in \mathbb{Z}$ such that $\operatorname{gcd}(a, n)=1$, the order of a modulo n divides m.
(b) Is it true that for every $n \in \mathbb{Z}_{>0}$, there exists an element of order m modulo n ?

Problem 7. Let p, q be odd primes for which $p=2 q+1$. Let $a \in \mathbb{Z}$ be an integer satisfying

$$
a \not \equiv-1,0,1 \quad(\bmod p) .
$$

Show that $-a^{2} \bmod p$ is a primitive root modulo p.

Problem 8 (Bonus). Let $n \in \mathbb{Z}$ be an integer with $n>6$. Show that

$$
\phi(n)>\sqrt{n}
$$

[^0]: Date: August 12, 2004.

