
FINAL EXAM
MATH 115: NUMBER THEORY

Answer each question completely, and give sufficient justification and
proof. Write neatly and in complete sentences!
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Problem 1. Let p be an odd prime and k ∈ Z>0. Show that the
congruence

x2 ≡ 1 (mod pk)

has only the solutions x ≡ ±1 (mod pk).
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Problem 2. For which primes p does the congruence

x2 + x + 1 ≡ 0 (mod p)

have a solution?
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Problem 3. The integer n = pq = 51809 (with p and q prime) is used
in an RSA cryptosystem. Through espionage, you find out that

σ(n) = 52416.

Find p and q.
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Problem 4.

(a) Show that the arithmetic function f(n) = (−1)n−1 is multi-
plicative.

(b) Let g be the arithmetic function

g(n) =
∑
d|n

µ(d)f(d).

Prove that g(n) = 0 if n is not a power of 2.
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Problem 5. Let a be an odd prime, b ∈ Z>0, and suppose that
p = a2 + 5b2 is prime. Prove that a is a quadratic residue modulo p if
and only if p ≡ 1 (mod 5).
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Problem 6. Let n ∈ Z>1 be an integer with prime factorization

n = pe1
1 pe2

2 . . . per
r ,

with pi prime and ei ∈ Z>0. Let

m = lcm
(
φ(pe1

1 ), φ(pe2
2 ), . . . , φ(per

r )
)
.

(a) Show that for every a ∈ Z such that gcd(a, n) = 1, the order of
a modulo n divides m.

(b) Is it true that for every n ∈ Z>0, there exists an element of
order m modulo n?
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Problem 7. Let p, q be odd primes for which p = 2q + 1. Let a ∈ Z
be an integer satisfying

a 6≡ −1, 0, 1 (mod p).

Show that −a2 mod p is a primitive root modulo p.
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Problem 8 (Bonus). Let n ∈ Z be an integer with n > 6. Show that

φ(n) >
√

n.


