FINAL EXAM SOLUTIONS MATH 115: NUMBER THEORY

Problem 1. The congruence implies that $p^{k} \mid\left(x^{2}-1\right)=(x-1)(x+1)$. Now, if p is an odd prime such that $p \mid(x-1)$ and $p \mid(x+1)$, then $p \mid(x-1)+(x+1)=2 x$ so since p is odd, $p \mid x$. Thus $p \mid x-(x-1)=1$, a contradiction. Therefore either $p^{k} \mid(x-1)$ or $p^{k} \mid(x+1)$, hence $x \equiv \pm 1\left(\bmod p^{k}\right)$.

Alternatively, we know that $f(x)=x^{2}-1 \equiv 0(\bmod p)$ which has only the solutions $x \equiv \pm 1(\bmod p)$; by Hensel's lemma, since $f^{\prime}(\pm 1)= \pm 2 \not \equiv 0(\bmod p)$, these lift uniquely, so there are exactly two solutions modulo p^{k}, hence they must be $x \equiv \pm 1\left(\bmod p^{k}\right)$.
[N.B. There is also a solution which uses the fact that p^{k} has a primitive root!]
Problem 2. First, the congruence has the solution $x \equiv 1(\bmod 3)$ for $p=3$. Now assume $p \neq 3$, so that $x \equiv 1(\bmod p)$ is not a solution. Note that

$$
(x-1)\left(x^{2}+x+1\right)=x^{3}-1 \equiv 0 \quad(\bmod p)
$$

Therefore the original congruence has a solution if and only if there is a nontrivial solution to this congruence, i.e. an element of order 3. This happens if and only if $3 \mid(p-1)$, i.e. $p \equiv 1(\bmod 3)$.

Alternatively, note that by a homework exercise (completing the square), the original congruence has a solution if and only if $y^{2} \equiv d \equiv 1^{2}-4(1)(1)=-3(\bmod p)$ has a solution. This has the solution $y \equiv 0(\bmod 3)$ if $p=3$, and otherwise, we need $(-3 / p)=1$, which again by a homework exercise (using quadratic reciprocity) we see that $p \equiv 1(\bmod 3)$.

Problem 3. We note that

$$
\sigma(n)=\sigma(p q)=(p+1)(q+1)=p q+p+q+1=51809+p+q+1=52416
$$

so $p+q=606$. Thus p, q are the roots of

$$
(x-p)(x-q)=x^{2}-(p+q) x+p q=x^{2}-606 x+51809=0
$$

so

$$
p, q=\frac{606 \pm \sqrt{606^{2}-4(51809)}}{2}=303 \pm 200=103,503
$$

Problem 4. For (a), suppose $m, n \in \mathbb{Z}_{\geq 1}$ with $\operatorname{gcd}(m, n)=1$. Note that

$$
f(m n)=(-1)^{m n-1}
$$

and

$$
f(m) f(n)=(-1)^{m-1}(-1)^{n-1}=(-1)^{(m-1)+(n-1)}=(-1)^{m+n}
$$

hence we need to show that

$$
m n-1 \equiv m+n \quad(\bmod 2)
$$

Date: August 12, 2004.

Since $\operatorname{gcd}(m, n)=1$, not both of m, n are even. Without loss of generality, then, we may assume $m \equiv 0,1(\bmod 2)$ and $n \equiv 1(\bmod 2)$. The congruence is true in both of these cases.

For (b), the easiest method is to use the homework: if $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, then

$$
\sum_{d \mid n} \mu(d) f(d)=\left(1-f\left(p_{1}\right)\right) \cdots\left(1-f\left(p_{r}\right)\right)
$$

Now if one p_{i} is odd, then $f\left(p_{i}\right)=1$ so the sum is zero.
To essentially reprove this result, argue as follows: since f is multiplicative and μ is multiplicative, so is their product μf. Therefore, since g is the summatory function of μf, so is g.

So suppose $n=p^{e}$ is an odd prime power, $e \geq 1$. Then

$$
\begin{aligned}
g\left(p^{e}\right) & =\sum_{d \mid p^{e}} \mu\left(p^{e}\right) f\left(p^{e}\right)=\mu(1) f(1)+\mu(p) f(p)+\cdots+\mu\left(p^{e}\right) f\left(p^{e}\right) \\
& =f(1)+f(p)=(-1)^{1-1}-(-1)^{p-1}=1-1=0
\end{aligned}
$$

since p is odd.
Now suppose that n is not a power of 2 . Then there is an odd prime p which divides n. Write $n=p^{e} m$ where $p \nmid m$. Then by multiplicativity,

$$
g(n)=g\left(p^{e}\right) g(m)=0
$$

Problem 5. We first note that $p \equiv 1(\bmod 4)$. This follows since

$$
p \equiv a^{2}+5 b^{2} \equiv a^{2}+b^{2} \equiv 0,1,2 \quad(\bmod 4)
$$

but p is an odd prime, so $p \equiv 1(\bmod 4)$.
Therefore by quadratic reciprocity, since a is an odd prime,

$$
\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)=\left(\frac{a^{2}+5 b^{2}}{a}\right)
$$

and since $a^{2}+5 b^{2} \equiv 5 b^{2}(\bmod a)$, and $\left(b^{2} / a\right)=1$ clearly, we have

$$
\left(\frac{a^{2}+5 b^{2}}{a}\right)=\left(\frac{5 b^{2}}{a}\right)=\left(\frac{5}{a}\right)\left(\frac{b^{2}}{a}\right)=\left(\frac{5}{a}\right)
$$

which by quadratic reciprocity is

$$
\left(\frac{5}{a}\right)=\left(\frac{a}{5}\right) .
$$

Therefore a is a quadratic residue modulo p if and only if $\left(\frac{a}{5}\right)=1$. This latter holds if and only if $a \equiv \pm 1(\bmod 5)$, which implies that

$$
p \equiv a^{2} \equiv 1 \quad(\bmod 5)
$$

Problem 6. By Euler's theorem, we note that

$$
a^{\phi\left(p_{i}^{e_{i}}\right)} \equiv 1 \quad\left(\bmod p_{i}^{e_{i}}\right) .
$$

Therefore since $\phi\left(p_{i}^{e_{i}}\right) \mid m$, we have

$$
a^{m} \equiv 1 \quad\left(\bmod p_{i}^{e_{i}}\right)
$$

By the Chinese remainder theorem, this implies that

$$
a^{m} \equiv 1 \quad(\bmod n)
$$

Therefore $o(a \bmod n) \mid m$. This solves (a).
For (b), the answer is "no". Indeed, if we take $n=8=2^{3}$, there is no element of order $\phi(8)=4$ modulo 8 .

Problem 7. Note first that $p \nmid a$. Now since $o\left(-a^{2} \bmod p\right) \mid p-1=2 q$, we have $o\left(-a^{2} \bmod p\right) \in\{1,2, q, 2 q\}$.

First, suppose $o\left(-a^{2} \bmod p\right) \mid 2$, so that

$$
\left(-a^{2}\right)^{2} \equiv a^{4} \equiv 1 \quad(\bmod p)
$$

Hence $o(a \bmod p)=1,2,4$. If $o(a \bmod p)=1,2$, then $a^{2} \equiv 1(\bmod p)$, so $a \equiv \pm 1$ $(\bmod p)$, a contradiction. If $o(a \bmod p)=4$, then $4 \mid(p-1)$ so $p \equiv 2 q+1 \equiv 1$ $(\bmod 4)$, a contradition since q is odd.

Therefore we only need to rule out $o\left(-a^{2} \bmod p\right)=q$. If so, then

$$
\left(-a^{2}\right)^{q} \equiv-a^{2 q} \equiv 1 \quad(\bmod p)
$$

But $\phi(p)=p-1=2 q$, so by Fermat's little theorem, since $p \nmid a$, we know that $a^{2 q} \equiv 1(\bmod p)$. Therefore $-a^{2 q} \equiv-1 \equiv 1(\bmod p)$, a contradiction since p is odd. Thus $o\left(-a^{2} \bmod p\right)=2 q=\phi(p)$, so $-a^{2} \bmod p$ is a primitive root.

Problem 8 (Bonus). [N.B. Note that $\phi(1)=1=\sqrt{1}, \phi(4)=2=\sqrt{4}$ but $\phi(2)=1<\sqrt{2}$ and $\phi(6)=2<\sqrt{6}$.

For any real number $x \geq 3$, we claim that

$$
x-1>\sqrt{x} .
$$

This follows since it is equivalent to

$$
(x-1)^{2}=x^{2}-2 x+1>x
$$

and this is equivalent to

$$
f(x)=x^{2}-3 x+1>0 .
$$

Note that f is a continuous function; $f^{\prime}(x)=2 x-3>0$ for $x>3 / 2$, so f is increasing there; so since $f(3)=9-9+1>0, f(x)>0$ for $x \geq 3$.

Now, suppose $n=p^{e}$ is an odd prime power, with $e \geq 1$. Then

$$
\phi\left(p^{e}\right)=p^{e-1}(p-1)>p^{e-1} \sqrt{p}
$$

and since $e-1 / 2 \geq e / 2$ (this is equivalent to $e / 2 \geq 1 / 2$, or $e \geq 1$), we have

$$
p^{e-1} \sqrt{p}=p^{e-1 / 2} \geq p^{e / 2}=\sqrt{p^{e}} .
$$

Finally, if n is odd, then

$$
\phi(n)=\phi\left(p_{1}^{e_{1}}\right) \cdots \phi\left(p_{r}^{e_{r}}\right)>\sqrt{p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}}=\sqrt{n}
$$

To conclude, one must treat the case that n is even! We leave it as a challenge to the reader to modify the above argument appropriately.

