FINAL EXAM REVIEW

 MATH 115: NUMBER THEORY
Problem 1.

(a) Show that if p is an odd prime of the form $p=a^{2}+b^{2}$, with $a, b \in \mathbb{Z}$, then $p \equiv 1(\bmod 4)$.
(b) Let p be a prime of the form $p=a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$ and a an odd prime. Prove that

$$
\left(\frac{a}{p}\right)=1 .
$$

Problem 2. Evaluate the Legendre symbol

$$
\left(\frac{103}{229}\right)
$$

Problem 3. Let $p \in \mathbb{Z}_{>0}$ be an odd prime and $n=3^{p}+1$. Let q be an odd prime divisor of n.
(a) What is the order of 3 modulo n ?
(b) Show that q is of the form $q=2 k p+1$ for some integer $k \in \mathbb{Z}_{>0}$.

Problem 4. Find all positive integers n such that $\phi(n) \mid 3 n$.

Problem 5.
(a) Use the fact that 3 is a primitive root modulo the prime 79 to find all $x \in \mathbb{Z} / 79 \mathbb{Z}$ satisfying

$$
x^{40} \equiv 2 \quad(\bmod 79) .
$$

(b) Is 2 a primitive root modulo 79 ?

Problem 6. Let N be a perfect number. Show that

$$
\prod_{\substack{p \mid N \\ p \text { prime }}}\left(1-\frac{1}{p}\right)<\frac{1}{2}
$$

Problem 7. A bank encodes a 3 digit PIN number using RSA encryption with key $e=835$ and $n=p q=1411=17 \cdot 83$. If Alice's PIN number is encoded as the ciphertext 002, what is her three-digit PIN number?

Problem 8. Let p be the prime

$$
p=131=2 \cdot 5 \cdot 13+1
$$

Use the fact that 53 has order 5 modulo p and that 39 has order 13 to find a primitive root r modulo p.

Problem 9. Let p be an odd prime with primitive root r.
(a) Let a be an integer with $\operatorname{gcd}(a, p)=1$. Show that a is a quadratic residue modulo p if and only if $\log _{r} a$ is even.
(b) Show that if a is a quadratic residue modulo p, then a is not a primitive root modulo p.
(c) Amongst the quadratic nonresidues modulo p, how many are primitive roots?

Problem 10. Let σ_{k} be the arithmetic function

$$
\sigma_{k}(n)=\sum_{d \mid n} d^{k}
$$

(a) Simplify

$$
\sum_{d \mid n} \mu(d) \sigma_{k}(n / d) .
$$

(b) Prove that the function

$$
S_{k}(n)=\sum_{d \mid n} \mu(d) \sigma_{k}(d)
$$

is multiplicative.

