FINAL EXAM REVIEW SOLUTIONS MATH 115: NUMBER THEORY

Problem 1. If p is odd, then without loss of generality, a is even and b is odd. Therefore

$$
p=a^{2}+b^{2} \equiv 0+1 \equiv 1 \quad(\bmod 4) .
$$

For (b), note that since $p \equiv 1(\bmod 4)$ is prime and a is prime as well, by quadratic reciprocity,

$$
\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)=\left(\frac{a^{2}+b^{2}}{a}\right) .
$$

Now the Legendre symbol only depends on the numerator modulo a, so since $a^{2}+$ $b^{2} \equiv b^{2}(\bmod a)$, we have

$$
\left(\frac{a^{2}+b^{2}}{a}\right)=\left(\frac{b^{2}}{a}\right)=1
$$

Problem 2. We compute using quadratic reciprocity:

$$
\left(\frac{103}{229}\right)=\left(\frac{229}{103}\right)=\left(\frac{23}{103}\right)=-\left(\frac{103}{23}\right)=-\left(\frac{11}{23}\right)=\left(\frac{23}{11}\right)=\left(\frac{1}{11}\right)=1 .
$$

Problem 3. Since $3^{p}+1 \equiv 0(\bmod n)$, we have $3^{p} \equiv-1(\bmod n)$, hence $3^{2 p} \equiv 1$ $(\bmod n)$. Therefore $h=o(3 \bmod n) \mid 2 p$, hence $h \in\{1,2, p, 2 p\}$. If $h=1$, then $3^{1}=3 \equiv 1(\bmod n)$, so $n \mid(3-1)=2$, but we see that $n \geq 28$, so this is impossible. Similarly, if $h=2$, then $3^{2}=9 \equiv 1(\bmod n)$, so $n \mid 8$, impossible. Finally, if $h=p$, then $3^{p} \equiv 1 \equiv-1(\bmod n)$, which is again impossible. Therefore $h=o(3 \bmod n)=2 p$.

For (b), first note that the arguments above work with n replaced by q. We have the same congruences (except modulo q), and now we cannot have $3 \equiv 1(\bmod q)$ or $9 \equiv 1(\bmod q)$ since q is odd. So $o(3 \bmod q)=2 p$. Therefore $2 p \mid(q-1)$, so $2 p k=q-1$, hence $q=1+2 p k$.

Problem 4. Let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, with $e_{i}>0, p_{i}$ prime. Then

$$
\phi(n)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) \cdots p_{r}^{e_{r}-1}\left(p_{r}-1\right) \mid 3 p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}
$$

Cancelling the common factors from both sides, we see this can happen if and only if

$$
\left(p_{1}-1\right) \cdots\left(p_{r}-1\right) \mid 3 p_{1} \cdots p_{r}
$$

Now note that if p is odd, then $p-1$ is even. Therefore the left-hand side is divisible by at least $r-1$ factors of 2 , since only one of the primes can be 2 . On the other hand, the right-hand side is divisible by at most 2 (at not 4) for the same reason. Therefore n can have at most one odd prime divisor, so either $n=2^{e}$, $n=p^{f}$, or $n=2^{e} p^{f}$ for some odd prime p and $e, f \geq 1$. In the first case, we have $\phi\left(2^{e}\right)=2^{e-1} \mid 2^{e}$ indeed. In the second case, we have $\phi\left(p^{f}\right)=p^{f-1}(p-1) \nmid p^{f}$, since $p-1$ is even but p^{f} is odd. In the last case, we have

$$
(2-1)(p-1)=(p-1) \mid 3 \cdot 2 \cdot p
$$

Since $\operatorname{gcd}(p-1, p)=1$, this implies $p-1 \mid 6$, so $p=2,3,4,7$, hence $p=3,7$. Checking these, we conclude that $n=1, n=2^{e}, n=2^{e} 3^{f}$, or $n=2^{e} 7^{f}$ for $e, f \geq 1$.
Problem 5. We take $\log _{3}$ of both sides to get

$$
\log _{3}\left(x^{40}\right)=40 \log _{3} x \equiv \log _{3} 2 \quad(\bmod 78)
$$

Now $\log _{3} 2=4$ since $3^{4}=81 \equiv 2(\bmod 79)$. Therefore we solve

$$
40 \log _{3} x \equiv 4 \quad(\bmod 78)
$$

Now $\operatorname{gcd}(40,78)=2 \mid 4$, so this becomes

$$
20 \log _{3} x \equiv 2 \quad(\bmod 39)
$$

Note that $20^{-1} \equiv 2(\bmod 39)$, since $20 \cdot 2 \equiv 1(\bmod 39)$, hence

$$
\log _{3} x \equiv 20^{-1} 2 \equiv 4 \quad(\bmod 39)
$$

Therefore $\log _{3} x=4,43$, and $x \equiv 3^{4}, 3^{43}(\bmod 79)$. We compute that $3^{4} \equiv 2$ $(\bmod 79)$, and although it would be painful to compute $3^{43}(\bmod 79)$, we notice that -2 is also a solution to the congruence, hence $3^{43} \equiv-2(\bmod 79)$.

For part (b), note that by (a) we have $2^{40} \equiv 2(\bmod 79)$, hence $2^{39} \equiv 1$ $(\bmod 79)$, hence $o(2 \bmod 79) \mid 39$. Hence $o(2 \bmod 79) \neq 78$, so no, 2 is not a primitive root.
Problem 6. Let $N=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$. Then

$$
\sigma(N)=\frac{p_{1}^{e_{1}+1}-1}{p_{1}-1} \cdots \frac{p_{r}^{e_{r}+1}-1}{p_{r}-1}=2 N=2 p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}
$$

Dividing both sides by $p_{1}^{e_{1}+1} \cdots p_{r}^{e_{r}+1}$ and multiplying by $\left(p_{1}-1\right) \cdots\left(p_{r}-1\right)$, we obtain

$$
\frac{p_{1}^{e_{1}+1}-1}{p_{1}^{e_{1}+1}} \cdots \frac{p_{r}^{e_{r}+1}-1}{p_{r}^{e_{r}+1}}=2 \frac{p_{1}-1}{p_{1}} \cdots \frac{p_{r}-1}{p_{r}}
$$

which rearranging becomes

$$
\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right)=\frac{1}{2}\left(1-\frac{1}{p_{1}^{e_{1}+1}}\right) \cdots\left(1-\frac{1}{p_{r}^{e_{r}+1}}\right)<\frac{1}{2} .
$$

Problem 7. We compute that $\phi(n)=16 \cdot 82=1312$ and using the extended Euclidean algorithm that $d \equiv e^{-1} \equiv 835^{-1} \equiv 11(\bmod 1312)$. Thus $P \equiv C^{d} \equiv$ $2^{11} \equiv 2048 \equiv 637(\bmod 1411)$ is her PIN number.

Problem 8. Note that if a has order h and b has order k modulo p, with $\operatorname{gcd}(h, k)=$ 1 , then $a b$ has order $h k$ modulo p. Together with the fact that -1 has order 2 modulo p, we conclude that

$$
-53 \cdot 39 \equiv 29 \quad(\bmod 131)
$$

has order $2 \cdot 5 \cdot 13=p-1$ modulo p, so $r=29$ is a primitive root.
Problem 9. Consider the equation $x^{2} \equiv a(\bmod p)$. Taking $\log _{r}$ of both sides, we obtain

$$
2 \log _{r} x \equiv \log _{r} a \quad(\bmod p-1)
$$

This has a solution if and only if $\operatorname{gcd}(2, p-1)=2 \mid \log _{r} a$, so a is a quadratic residue if and only if $\log _{r} a$ is even.

For (b), we write $a \equiv r^{\log _{r} a}(\bmod p)$. Now $r^{u} \bmod p$ is a primitive root if and only if $\operatorname{gcd}(u, p-1)=1$. If a is quadratic residue, then $u=\log _{r} a$ is even, so $\operatorname{gcd}(u, p-1)=2$, so a is not a primitive root.

For (c), all of the primitive roots modulo p are quadratic nonresidues by (a), so there are $\phi(\phi(p))$ such (of the $(p-1) / 2$ quadratic nonresidues).

Problem 10. We apply Möbius inversion; since $\sigma_{k}(n)$ is the summatory function of $f(n)=n^{k}$, we conclude

$$
\sum_{d \mid n} \mu(d) \sigma_{k}(n / d)=n^{k}
$$

For (b), we first note that $f(n)=n^{k}$ is (completely) multiplicative $(f(m n)=$ $\left.(m n)^{k}=m^{k} n^{k}=f(m) f(n)\right)$. Therefore $\sigma_{k}(n)$ is multiplicative since it is the summatory function of f which is multiplicative. Now $\mu(n) \sigma_{k}(n)$ is multiplicative as well, since μ is multiplicative and hence

$$
\mu(m n) \sigma_{k}(m n)=\mu(m) \mu(n) \sigma_{k}(m) \sigma_{k}(n)=\left(\mu(m) \sigma_{k}(m)\right)\left(\mu(n) \sigma_{k}(n)\right)
$$

if $\operatorname{gcd}(m, n)=1$. Finally, $S_{k}(n)$ is the summatory function of $\mu(n) \sigma_{k}(n)$, so it is also multiplicative.

Thanks everyone, you were a great class. Good luck on the final!

