
FINAL EXAM REVIEW SOLUTIONS
MATH 115: NUMBER THEORY

Problem 1. If p is odd, then without loss of generality, a is even and b is odd.
Therefore

p = a2 + b2 ≡ 0 + 1 ≡ 1 (mod 4).
For (b), note that since p ≡ 1 (mod 4) is prime and a is prime as well, by

quadratic reciprocity, (
a

p

)
=

(p

a

)
=

(
a2 + b2

a

)
.

Now the Legendre symbol only depends on the numerator modulo a, so since a2 +
b2 ≡ b2 (mod a), we have (

a2 + b2

a

)
=

(
b2

a

)
= 1.

Problem 2. We compute using quadratic reciprocity:(
103
229

)
=

(
229
103

)
=

(
23
103

)
= −

(
103
23

)
= −

(
11
23

)
=

(
23
11

)
=

(
1
11

)
= 1.

Problem 3. Since 3p + 1 ≡ 0 (mod n), we have 3p ≡ −1 (mod n), hence 32p ≡ 1
(mod n). Therefore h = o(3 mod n) | 2p, hence h ∈ {1, 2, p, 2p}. If h = 1, then
31 = 3 ≡ 1 (mod n), so n | (3 − 1) = 2, but we see that n ≥ 28, so this is
impossible. Similarly, if h = 2, then 32 = 9 ≡ 1 (mod n), so n | 8, impossible.
Finally, if h = p, then 3p ≡ 1 ≡ −1 (mod n), which is again impossible. Therefore
h = o(3 mod n) = 2p.

For (b), first note that the arguments above work with n replaced by q. We have
the same congruences (except modulo q), and now we cannot have 3 ≡ 1 (mod q)
or 9 ≡ 1 (mod q) since q is odd. So o(3 mod q) = 2p. Therefore 2p | (q − 1), so
2pk = q − 1, hence q = 1 + 2pk.

Problem 4. Let n = pe1
1 · · · per

r , with ei > 0, pi prime. Then

φ(n) = pe1−1
1 (p1 − 1) · · · per−1

r (pr − 1) | 3pe1
1 · · · per

r .

Cancelling the common factors from both sides, we see this can happen if and only
if

(p1 − 1) · · · (pr − 1) | 3p1 · · · pr.

Now note that if p is odd, then p − 1 is even. Therefore the left-hand side is
divisible by at least r − 1 factors of 2, since only one of the primes can be 2. On
the other hand, the right-hand side is divisible by at most 2 (at not 4) for the same
reason. Therefore n can have at most one odd prime divisor, so either n = 2e,
n = pf , or n = 2epf for some odd prime p and e, f ≥ 1. In the first case, we have
φ(2e) = 2e−1 | 2e indeed. In the second case, we have φ(pf ) = pf−1(p − 1) - pf ,
since p− 1 is even but pf is odd. In the last case, we have

(2− 1)(p− 1) = (p− 1) | 3 · 2 · p.
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Since gcd(p − 1, p) = 1, this implies p − 1 | 6, so p = 2, 3, 4, 7, hence p = 3, 7.
Checking these, we conclude that n = 1, n = 2e, n = 2e3f , or n = 2e7f for e, f ≥ 1.

Problem 5. We take log3 of both sides to get

log3(x
40) = 40 log3 x ≡ log3 2 (mod 78).

Now log3 2 = 4 since 34 = 81 ≡ 2 (mod 79). Therefore we solve

40 log3 x ≡ 4 (mod 78).

Now gcd(40, 78) = 2 | 4, so this becomes

20 log3 x ≡ 2 (mod 39).

Note that 20−1 ≡ 2 (mod 39), since 20 · 2 ≡ 1 (mod 39), hence

log3 x ≡ 20−12 ≡ 4 (mod 39).

Therefore log3 x = 4, 43, and x ≡ 34, 343 (mod 79). We compute that 34 ≡ 2
(mod 79), and although it would be painful to compute 343 (mod 79), we notice
that −2 is also a solution to the congruence, hence 343 ≡ −2 (mod 79).

For part (b), note that by (a) we have 240 ≡ 2 (mod 79), hence 239 ≡ 1
(mod 79), hence o(2 mod 79) | 39. Hence o(2 mod 79) 6= 78, so no, 2 is not a
primitive root.

Problem 6. Let N = pe1
1 · · · per

r . Then

σ(N) =
pe1+1
1 − 1
p1 − 1

· · · per+1
r − 1
pr − 1

= 2N = 2pe1
1 · · · per

r .

Dividing both sides by pe1+1
1 · · · per+1

r and multiplying by (p1 − 1) · · · (pr − 1), we
obtain

pe1+1
1 − 1
pe1+1
1

· · · per+1
r − 1
per+1

r

= 2
p1 − 1

p1
· · · pr − 1

pr

which rearranging becomes(
1− 1

p1

)
· · ·

(
1− 1

pr

)
=

1
2

(
1− 1

pe1+1
1

)
· · ·

(
1− 1

per+1
r

)
<

1
2
.

Problem 7. We compute that φ(n) = 16 · 82 = 1312 and using the extended
Euclidean algorithm that d ≡ e−1 ≡ 835−1 ≡ 11 (mod 1312). Thus P ≡ Cd ≡
211 ≡ 2048 ≡ 637 (mod 1411) is her PIN number.

Problem 8. Note that if a has order h and b has order k modulo p, with gcd(h, k) =
1, then ab has order hk modulo p. Together with the fact that −1 has order 2
modulo p, we conclude that

−53 · 39 ≡ 29 (mod 131)

has order 2 · 5 · 13 = p− 1 modulo p, so r = 29 is a primitive root.

Problem 9. Consider the equation x2 ≡ a (mod p). Taking logr of both sides, we
obtain

2 logr x ≡ logr a (mod p− 1).

This has a solution if and only if gcd(2, p − 1) = 2 | logr a, so a is a quadratic
residue if and only if logr a is even.
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For (b), we write a ≡ rlogr a (mod p). Now ru mod p is a primitive root if and
only if gcd(u, p − 1) = 1. If a is quadratic residue, then u = logr a is even, so
gcd(u, p− 1) = 2, so a is not a primitive root.

For (c), all of the primitive roots modulo p are quadratic nonresidues by (a), so
there are φ(φ(p)) such (of the (p− 1)/2 quadratic nonresidues).

Problem 10. We apply Möbius inversion; since σk(n) is the summatory function
of f(n) = nk, we conclude ∑

d|n

µ(d)σk(n/d) = nk.

For (b), we first note that f(n) = nk is (completely) multiplicative (f(mn) =
(mn)k = mknk = f(m)f(n)). Therefore σk(n) is multiplicative since it is the
summatory function of f which is multiplicative. Now µ(n)σk(n) is multiplicative
as well, since µ is multiplicative and hence

µ(mn)σk(mn) = µ(m)µ(n)σk(m)σk(n) = (µ(m)σk(m))(µ(n)σk(n)),

if gcd(m,n) = 1. Finally, Sk(n) is the summatory function of µ(n)σk(n), so it is
also multiplicative.

Thanks everyone, you were a great class. Good luck on the final!


