FINAL EXAM REVIEW SOLUTIONS MATH 115: NUMBER THEORY

Problem 1. If p is odd, then without loss of generality, a is even and b is odd. Therefore

$$p = a^2 + b^2 \equiv 0 + 1 \equiv 1 \pmod{4}$$

For (b), note that since $p \equiv 1 \pmod{4}$ is prime and a is prime as well, by quadratic reciprocity,

$$\left(\frac{a}{p}\right) = \left(\frac{p}{a}\right) = \left(\frac{a^2 + b^2}{a}\right)$$

Now the Legendre symbol only depends on the numerator modulo a, so since $a^2 + b^2 \equiv b^2 \pmod{a}$, we have

$$\left(\frac{a^2+b^2}{a}\right) = \left(\frac{b^2}{a}\right) = 1.$$

Problem 2. We compute using quadratic reciprocity:

$$\left(\frac{103}{229}\right) = \left(\frac{229}{103}\right) = \left(\frac{23}{103}\right) = -\left(\frac{103}{23}\right) = -\left(\frac{11}{23}\right) = \left(\frac{23}{11}\right) = \left(\frac{1}{11}\right) = 1.$$

Problem 3. Since $3^p + 1 \equiv 0 \pmod{n}$, we have $3^p \equiv -1 \pmod{n}$, hence $3^{2p} \equiv 1 \pmod{n}$. Therefore $h \equiv o(3 \mod n) \mid 2p$, hence $h \in \{1, 2, p, 2p\}$. If h = 1, then $3^1 \equiv 3 \equiv 1 \pmod{n}$, so $n \mid (3-1) = 2$, but we see that $n \geq 28$, so this is impossible. Similarly, if h = 2, then $3^2 = 9 \equiv 1 \pmod{n}$, so $n \mid 8$, impossible. Finally, if h = p, then $3^p \equiv 1 \equiv -1 \pmod{n}$, which is again impossible. Therefore $h = o(3 \mod n) = 2p$.

For (b), first note that the arguments above work with n replaced by q. We have the same congruences (except modulo q), and now we cannot have $3 \equiv 1 \pmod{q}$ or $9 \equiv 1 \pmod{q}$ since q is odd. So $o(3 \mod q) = 2p$. Therefore $2p \mid (q-1)$, so 2pk = q - 1, hence q = 1 + 2pk.

Problem 4. Let $n = p_1^{e_1} \cdots p_r^{e_r}$, with $e_i > 0$, p_i prime. Then

$$\phi(n) = p_1^{e_1-1}(p_1-1)\cdots p_r^{e_r-1}(p_r-1) \mid 3p_1^{e_1}\cdots p_r^{e_r}$$

Cancelling the common factors from both sides, we see this can happen if and only if

$$(p_1-1)\cdots(p_r-1)\mid 3p_1\cdots p_r.$$

Now note that if p is odd, then p-1 is even. Therefore the left-hand side is divisible by at least r-1 factors of 2, since only one of the primes can be 2. On the other hand, the right-hand side is divisible by at most 2 (at not 4) for the same reason. Therefore n can have at most one odd prime divisor, so either $n = 2^e$, $n = p^f$, or $n = 2^e p^f$ for some odd prime p and $e, f \ge 1$. In the first case, we have $\phi(2^e) = 2^{e-1} \mid 2^e$ indeed. In the second case, we have $\phi(p^f) = p^{f-1}(p-1) \nmid p^f$, since p-1 is even but p^f is odd. In the last case, we have

$$(2-1)(p-1) = (p-1) \mid 3 \cdot 2 \cdot p.$$

Since gcd(p-1,p) = 1, this implies $p-1 \mid 6$, so p = 2, 3, 4, 7, hence p = 3, 7. Checking these, we conclude that $n = 1, n = 2^e, n = 2^e 3^f$, or $n = 2^e 7^f$ for $e, f \ge 1$.

Problem 5. We take \log_3 of both sides to get

 $\log_3(x^{40}) = 40 \log_3 x \equiv \log_3 2 \pmod{78}.$

Now $\log_3 2 = 4$ since $3^4 = 81 \equiv 2 \pmod{79}$. Therefore we solve

 $40 \log_3 x \equiv 4 \pmod{78}$.

Now $gcd(40, 78) = 2 \mid 4$, so this becomes

$$20\log_3 x \equiv 2 \pmod{39}.$$

Note that $20^{-1} \equiv 2 \pmod{39}$, since $20 \cdot 2 \equiv 1 \pmod{39}$, hence

$$\log_3 x \equiv 20^{-1}2 \equiv 4 \pmod{39}$$

Therefore $\log_3 x = 4, 43$, and $x \equiv 3^4, 3^{43} \pmod{79}$. We compute that $3^4 \equiv 2 \pmod{79}$, and although it would be painful to compute $3^{43} \pmod{79}$, we notice that -2 is also a solution to the congruence, hence $3^{43} \equiv -2 \pmod{79}$.

For part (b), note that by (a) we have $2^{40} \equiv 2 \pmod{79}$, hence $2^{39} \equiv 1 \pmod{79}$, hence $o(2 \mod 79) \mid 39$. Hence $o(2 \mod 79) \neq 78$, so no, 2 is not a primitive root.

Problem 6. Let $N = p_1^{e_1} \cdots p_r^{e_r}$. Then

$$\sigma(N) = \frac{p_1^{e_1+1}-1}{p_1-1} \cdots \frac{p_r^{e_r+1}-1}{p_r-1} = 2N = 2p_1^{e_1} \cdots p_r^{e_r}.$$

Dividing both sides by $p_1^{e_1+1} \cdots p_r^{e_r+1}$ and multiplying by $(p_1 - 1) \cdots (p_r - 1)$, we obtain

$$\frac{p_1^{e_1+1}-1}{p_1^{e_1+1}}\cdots\frac{p_r^{e_r+1}-1}{p_r^{e_r+1}} = 2\frac{p_1-1}{p_1}\cdots\frac{p_r-1}{p_r}$$

which rearranging becomes

$$\left(1-\frac{1}{p_1}\right)\cdots\left(1-\frac{1}{p_r}\right) = \frac{1}{2}\left(1-\frac{1}{p_1^{e_1+1}}\right)\cdots\left(1-\frac{1}{p_r^{e_r+1}}\right) < \frac{1}{2}.$$

Problem 7. We compute that $\phi(n) = 16 \cdot 82 = 1312$ and using the extended Euclidean algorithm that $d \equiv e^{-1} \equiv 835^{-1} \equiv 11 \pmod{1312}$. Thus $P \equiv C^d \equiv 2^{11} \equiv 2048 \equiv 637 \pmod{1411}$ is her PIN number.

Problem 8. Note that if a has order h and b has order k modulo p, with gcd(h, k) = 1, then ab has order hk modulo p. Together with the fact that -1 has order 2 modulo p, we conclude that

$$-53 \cdot 39 \equiv 29 \pmod{131}$$

has order $2 \cdot 5 \cdot 13 = p - 1$ modulo p, so r = 29 is a primitive root.

Problem 9. Consider the equation $x^2 \equiv a \pmod{p}$. Taking \log_r of both sides, we obtain

$$2\log_r x \equiv \log_r a \pmod{p-1}.$$

This has a solution if and only if $gcd(2, p - 1) = 2 | \log_r a$, so a is a quadratic residue if and only if $\log_r a$ is even.

For (b), we write $a \equiv r^{\log_r a} \pmod{p}$. Now $r^u \mod p$ is a primitive root if and only if gcd(u, p - 1) = 1. If a is quadratic residue, then $u = \log_r a$ is even, so gcd(u, p - 1) = 2, so a is not a primitive root.

For (c), all of the primitive roots modulo p are quadratic nonresidues by (a), so there are $\phi(\phi(p))$ such (of the (p-1)/2 quadratic nonresidues).

Problem 10. We apply Möbius inversion; since $\sigma_k(n)$ is the summatory function of $f(n) = n^k$, we conclude

$$\sum_{d|n} \mu(d) \sigma_k(n/d) = n^k.$$

For (b), we first note that $f(n) = n^k$ is (completely) multiplicative $(f(mn) = (mn)^k = m^k n^k = f(m)f(n))$. Therefore $\sigma_k(n)$ is multiplicative since it is the summatory function of f which is multiplicative. Now $\mu(n)\sigma_k(n)$ is multiplicative as well, since μ is multiplicative and hence

$$\mu(mn)\sigma_k(mn) = \mu(m)\mu(n)\sigma_k(m)\sigma_k(n) = (\mu(m)\sigma_k(m))(\mu(n)\sigma_k(n))$$

if gcd(m,n) = 1. Finally, $S_k(n)$ is the summatory function of $\mu(n)\sigma_k(n)$, so it is also multiplicative.

Thanks everyone, you were a great class. Good luck on the final!