MATH 351: RIEMANN SURFACES AND DESSINS D'ENFANTS HOMEWORK \#26

Problem 26.1. Check by direct calculation that if $f(z) \in \mathbb{C}(z)$ is a rational function, then the meromorphic differential $f(z) d z$ on \mathbb{P}^{1} satisfies the residue theorem. [Hint: Use partial fractions!]
Problem 26.2. Let $\Lambda \subseteq \mathbb{C}$ be a lattice and let $\pi: \mathbb{C} \rightarrow X=\mathbb{C} / \Lambda$ be the natural quotient map.
(a) Let $\lambda \in \Lambda$. Define the curve $r_{\lambda}:[0,1] \rightarrow \mathbb{C}$ by $r_{\lambda}(t)=t \lambda$. Show that $\pi \circ r_{\lambda}$ is a closed path on X, and compute the integral $\int_{\pi \circ r_{\lambda}} d z$ on X.
(b) Show that

$$
\left\{\int_{r} d z: r \text { a closed path on } X\right\}=\Lambda .
$$

