MATH 351: RIEMANN SURFACES AND DESSINS D'ENFANTS HOMEWORK \#20

Problem 20.1. Find the rational functions $f(z) \in \mathbb{C}(z)$ such that f has two double zeros, two double poles, and $f(z)-1$ has two double zeros. [Hint: Take the two double poles to be $0, \infty$ and the two double zeros to be at $a,-a$ for $a \in \mathbb{C}^{\times}$, so $f(z)=\left(z^{2}-a^{2}\right)^{2} / z^{2}$.]
Problem 20.2. Finish the labelling of the stereographic projection of the tetrahedral tessellation corresponding to $\Delta(2,3,3)$. Note any relations you observe in this labelling. How do you rotate around one of the other vertices not originally labelled a, b, c ? Do the same for the octahedral (and if you're feeling adventurous, the icosahedral) tessellations:
http://www.cems.uvm.edu/~jvoight/351/Magnus.pdf

