MATH 351: RIEMANN SURFACES AND DESSINS D’ENFANTS HOMEWORK \#14

Problem 14.1. We showed in class that the only spherical triples are ($2,2, c$) (with $c \in \mathbb{Z}_{\geq 2}$) and $(2,3,3),(2,3,4),(2,3,5)$. In each of these cases, draw these triangles on a sphere. How many of them are necessary to cover (tessellate)? If you flatten these triangles, the last three correspond to Platonic solids: what are they? [Hint: Buy some oranges! And compare

http://www.cems.uvm.edu/~jvoight/351/Magnus.pdf

to your answer.]
Problem 14.2. Show that in any geometry (spherical, Euclidean, or hyperbolic), the composition of two reflections whose axes meet at a point p at an angle θ is given by rotation by 2θ around p. [Hint: Do each case separately. In the spherical case, take $p=\infty$ and argue the corresponding reflections in \mathbb{C}. For \mathbb{C}, you may assume that one axis is the horizontal axis; do one matrix calculation. For \mathbb{H}, move to \mathbb{D} and take $p=0$.]

