MATH 351: RIEMANN SURFACES AND DESSINS D'ENFANTS HOMEWORK #14

Problem 14.1. We showed in class that the only spherical triples are (2, 2, c) (with $c \in \mathbb{Z}_{\geq 2}$) and (2, 3, 3), (2, 3, 4), (2, 3, 5). In each of these cases, draw these triangles on a sphere. How many of them are necessary to cover (tessellate)? If you flatten these triangles, the last three correspond to Platonic solids: what are they? [Hint: Buy some oranges! And compare

http://www.cems.uvm.edu/~jvoight/351/Magnus.pdf

to your answer.]

Problem 14.2. Show that in any geometry (spherical, Euclidean, or hyperbolic), the composition of two reflections whose axes meet at a point p at an angle θ is given by rotation by 2θ around p. [Hint: Do each case separately. In the spherical case, take $p = \infty$ and argue the corresponding reflections in \mathbb{C} . For \mathbb{C} , you may assume that one axis is the horizontal axis; do one matrix calculation. For \mathbb{H} , move to \mathbb{D} and take p = 0.]

Date: Monday, 11 February 2013.