MATH 351: RIEMANN SURFACES AND DESSINS D'ENFANTS HOMEWORK \#13

Problem 13.1. An ideal triangle in the completed upper half-plane

$$
\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{P}^{1}(\mathbb{R})=\mathbb{H} \cup \mathbb{R} \cup\{\infty\}
$$

is a triangle (connected closed subset whose boundary consists of three geodesic segments intersecting in three distinct points) all of whose vertices lie in $\mathbb{P}^{1}(\mathbb{R})$.

Show that the area of an ideal triangle is π. [Hint: Do the integral! Or reduce to one of the two cases we did. What is the significance of the fact that the area is independent of the location of the vertices?]

