MATH 351: RIEMANN SURFACES AND DESSINS D'ENFANTS HOMEWORK #11

Problem 11.1. Let $f(z) \in \operatorname{Aut}(\mathbb{C})$ be an automorphism, so that f(z) = az + b with $a, b \in \mathbb{C}$ with $a \neq 0$. Show that f is an isometry of \mathbb{C} under the metric $ds^2 = |dz|^2 = dx^2 + dy^2$ if and only if |a| = 1. [Hint: |df(z)| = |df/dz||dz|.]

Problem 11.2. Let $f(w) \in \operatorname{Aut}(\mathbb{P}^1)$ be an automorphism with $f(\infty) = \infty = [1:0]$, so that f(w) = aw + b. Show that f is an isometry of $\mathbb{P}^1 = \mathbb{S}^2$ (with the spherical metric $ds^2 = dx^2 + dy^2 + dz^2$) if and only if |a| = 1 and b = 0, in which case f is a rotation about the z axis. [Hint: Argue with the metric; or be clever and use the fact that $d(0, \infty) = d(b, \infty)$ to conclude that b = 0 and then d(0, 1) = d(0, a) to conclude |a| = 1.]

Date: Wednesday, 6 February 2013.