MATH 351: RIEMANN SURFACES AND DESSINS D'ENFANTS HOMEWORK \#8

Problem 8.1. Show that

$$
g\left(X_{1} \# X_{2}\right)=g\left(X_{1}\right)+g\left(X_{2}\right)
$$

for compact, orientable (triangulable) surfaces X_{1}, X_{2}. Conclude (informally) that "the genus of an compact orientable surface is the number of holes."

Problem 8.2. Let X be a triangulation of a compact surface with v vertices, e edges, and f faces, and let $\chi(X)=v-e+f$. Show that:
(a) $2 e=3 f$.
(b) $e=3(v-\chi)$.
(c) $e \leq v(v-1) / 2$, hence

$$
v \geq \frac{1}{2}(7+\sqrt{49-24 \chi}) .
$$

Conclude that for the sphere $\left(\chi\left(\mathbb{S}^{2}\right)=2\right)$, the triangulation with the smallest number of faces is the tetrahedron, and for the torus $\left(\chi\left(\mathbb{T}^{2}\right)=0\right)$ any triangulation has at least 14 faces.
Problem 8.3. Use the fact that $\chi\left(\mathbb{S}^{2}\right)=2$ to show that there are only five regular polyhedra. [Hint: Consider subdivisions of the sphere into n-gons such that exactly m edges meet at each vertex, $m, n \geq 3$. Show that $n f=2 e=m v$, so that

$$
\frac{1}{e}+\frac{1}{2}=\frac{1}{m}+\frac{1}{n}
$$

and consider the solutions with $n=3,4,5$ and $n \geq 6$ in turn.]

