MATH 351: RIEMANN SURFACES AND DESSINS D'ENFANTS HOMEWORK #8

Problem 8.1. Show that

 $g(X_1 \# X_2) = g(X_1) + g(X_2)$

for compact, orientable (triangulable) surfaces X_1, X_2 . Conclude (informally) that "the genus of an compact orientable surface is the number of holes."

Problem 8.2. Let X be a triangulation of a compact surface with v vertices, e edges, and f faces, and let $\chi(X) = v - e + f$. Show that:

(a) 2e = 3f. (b) $e = 3(v - \chi)$. (c) $e \le v(v - 1)/2$, hence

$$v \ge \frac{1}{2} \left(7 + \sqrt{49 - 24\chi} \right).$$

Conclude that for the sphere $(\chi(\mathbb{S}^2) = 2)$, the triangulation with the smallest number of faces is the tetrahedron, and for the torus $(\chi(\mathbb{T}^2) = 0)$ any triangulation has at least 14 faces.

Problem 8.3. Use the fact that $\chi(\mathbb{S}^2) = 2$ to show that there are only five regular polyhedra. [*Hint: Consider subdivisions of the sphere into n-gons such that exactly m edges meet at each vertex,* $m, n \geq 3$. Show that nf = 2e = mv, so that

$$\frac{1}{e} + \frac{1}{2} = \frac{1}{m} + \frac{1}{n}$$

and consider the solutions with n = 3, 4, 5 and $n \ge 6$ in turn.]

Date: Friday, 25 January 2013.