MATH 351: RIEMANN SURFACES AND DESSINS D'ENFANTS HOMEWORK #2

Problem 2.1. Let X be a topological space.

- (a) Let $Z \subseteq X$. Let $\mathcal{V} = \{U \cap Z : U \text{ open in } X\}$. Show that \mathcal{V} defines a topology on Z, called the *subspace* (or *relative*) *topology* on Z. Show that \mathcal{V} is the smallest topology on Z such that the inclusion map $Z \hookrightarrow X$ is continuous.
- (b) Now suppose that $f: X \to Y$ is a homeomorphism. Show that $f|_Z: Z \to f(Z)$ is a homeomorphism, if Z and f(Z) are given the subspace topology.

Problem 2.2. Let $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}$ be the cone in \mathbb{R}^3 with the subspace topology. Show that X cannot be given the structure of a topological surface.

Date: Wednesday, 16 January 2013.