MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#12

Problem 1. Let p be prime and define

$$
a_{n}(p)=\#\left\{f \in \mathbb{F}_{p}[X]: \operatorname{deg} f=n, f \text { monic irreducible }\right\} .
$$

(a) Show that $a_{2}(p)=\left(p^{2}-p\right) / 2$ and $a_{3}(p)=\left(p^{3}-p\right) / 3$.
(b) Use the equality
(*)

$$
\sum_{d \mid n} d a_{d}(p)=p^{n}
$$

(which you may assume) to compute $a_{n}(2)$ for $n=1, \ldots, 5$.
(c) Use (*) to prove that

$$
\frac{p^{n}-2 p^{n / 2}}{n}<a_{n}(p) \leq \frac{p^{n}}{n}
$$

Conclude that the probability that a random monic polynomial of degree n over \mathbb{F}_{p} is irreducible is roughly $1 / n$.

