MATH 252: ABSTRACT ALGEBRA II HOMEWORK #10

Problem 1 (sorta DF 13.3.5).

- (a) Show that $\alpha = 2\cos(2\pi/5)$ satisfies the equation $x^2 + x 1 = 0$. [Hint: Use a trigonometric identity or the fact that $\alpha = \zeta_5 + 1/\zeta_5$ where $\zeta_5 = \exp(2\pi i/5) = \cos(2\pi/5) + i\sin(2\pi/5)$ is a primitive fifth root of unity.]
- (b) Conclude that the regular 5-gon is constructible by straightedge and compass.

Problem 2 (DF 14.1.5). Determine the group $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q})$ explicitly.

Problem 3 (DF 14.1.7). Show that $\operatorname{Aut}(\mathbb{R}/\mathbb{Q}) = {\operatorname{id}}$. [Hint: Since $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$ restricts to the identity on \mathbb{Q} , argue that σ is continuous and therefore the identity on all of \mathbb{R} .]

Problem 4 (DF 13.4.3–4). Determine the splitting field and its degree over \mathbb{Q} for $x^4 + x^2 + 1$ and $x^6 - 4$.

Problem 5 (DF 13.5.5). For any prime p and any nonzero $a \in \mathbb{F}_p$ prove that $x^p - x + a$ is irreducible and separable over \mathbb{F}_p . [Hint: Prove first that if α is a root then $\alpha + 1$ is also a root.]

Date: 6 April 2012; due Friday, 13 April 2012.