MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#10

Problem 1 (sorta DF 13.3.5).

(a) Show that $\alpha=2 \cos (2 \pi / 5)$ satisfies the equation $x^{2}+x-1=0$. [Hint: Use a trigonometric identity or the fact that $\alpha=\zeta_{5}+1 / \zeta_{5}$ where $\zeta_{5}=\exp (2 \pi i / 5)=$ $\cos (2 \pi / 5)+i \sin (2 \pi / 5)$ is a primitive fifth root of unity.]
(b) Conclude that the regular 5 -gon is constructible by straightedge and compass.

Problem 2 (DF 14.1.5). Determine the group $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q})$ explicitly.
Problem 3 (DF 14.1.7). Show that $\operatorname{Aut}(\mathbb{R} / \mathbb{Q})=\{i d\}$. [Hint: Since $\sigma \in \operatorname{Aut}(\mathbb{R} / \mathbb{Q})$ restricts to the identity on \mathbb{Q}, argue that σ is continuous and therefore the identity on all of R.]

Problem 4 (DF 13.4.3-4). Determine the splitting field and its degree over \mathbb{Q} for $x^{4}+x^{2}+1$ and $x^{6}-4$.

Problem 5 (DF 13.5.5). For any prime p and any nonzero $a \in \mathbb{F}_{p}$ prove that $x^{p}-x+a$ is irreducible and separable over \mathbb{F}_{p}. [Hint: Prove first that if α is a root then $\alpha+1$ is also a root.]

