## MATH 252: ABSTRACT ALGEBRA II HOMEWORK $\# 9$

Problem 1 (DF 13.1.5). Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial. Suppose that $f(\alpha)=0$ for some $\alpha \in \mathbb{Q}$. Show that $\alpha \in \mathbb{Z}$.
Problem 2 (DF 13.2.7). Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. [Hint: Consider $\sqrt{2}+\sqrt{3}$.] Conclude that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=4$. Find an irreducible polynomial over $\mathbb{Q}$ satisfied by $\sqrt{2}+\sqrt{3}$.
Problem 3 (DF 13.2.14). Prove that if $[F(\alpha): F]$ is odd then $F(\alpha)=F\left(\alpha^{2}\right)$.
Problem 4 (DF 13.2.21). Let $D \in \mathbb{Z}$ be squarefree and let $K=\mathbb{Q}(\sqrt{D})$. Let $\alpha=$ $a+b \sqrt{D} \in K$.
(a) Show that the "multiplication by $\alpha$ " map

$$
\begin{aligned}
\phi: K & \rightarrow K \\
\beta & \mapsto \phi(\beta)=\alpha \beta
\end{aligned}
$$

is a linear transformation (of vector spaces over $\mathbb{Q}$ ).
(b) Compute the matrix of $\phi$ on the basis $1, \sqrt{D}$ of $K$.

