MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#8

Problem 1 (DF 12.1.2). Let R be an integral domain and let M be an R-module. The rank of M is the maximal number of R-linearly independent elements of M.
(a) Suppose that M has rank n and that x_{1}, \ldots, x_{n} is any maximal set of R-linearly independent elements of M. Let $N=R x_{1}+\cdots+R x_{n}$ be the R-submodule generated by x_{1}, \ldots, x_{n}. Prove that N is isomorphic to R^{n} and that the quotient M / N is a torsion R-module. [Hint: Show that the map $R^{n} \rightarrow N$ which sends the ith standard basis vector to x_{i} is an isomorphism of R-modules.]
(b) Prove conversely that if M contains a submodule N that is free of rank n (i.e., $N \cong R^{n}$) such that the quotient M / N is a torsion R-module then M has rank n. [Hint: Let y_{1}, \ldots, y_{n+1} be any $n+1$ elements of M. Use the fact that M / N is torsion to write $r_{i} y_{i}$ as a linear combination of a basis for N for some nonzero elements r_{i} of R. Use an argument like Proposition 12.1.3 to show that the $r_{i} y_{i}$, and hence also the y_{i}, are linearly dependent.]

Problem 2 (DF 12.1.5). Let $R=\mathbb{Z}[x]$ and let $M=(2, x)$ be the ideal generated by 2 and x, considered as a submodule of R. Show that $\{2, x\}$ is not a basis of M. Show that the rank of M is 1 but that M is not free of rank 1 .

Problem 3^{*}. Let R be a PID and let M be a finitely generated torsion R-module. Show that there exists $y \in M$ such that $\operatorname{ann}(y)=\operatorname{ann}(M)$.
Problem 4. Let M be the \mathbb{Z}-module generated by $x_{1}, x_{2}, x_{3}, x_{4}$ subject to the relations

$$
\begin{aligned}
x_{1}+3 x_{2}-9 x_{3} & =0 \\
x_{1}+3 x_{2}+3 x_{3}+12 x_{4} & =0 \\
2 x_{1}+4 x_{2}+2 x_{3}+24 x_{4} & =0
\end{aligned}
$$

Give an explicit isomorphism of M to a direct sum of cyclic abelian groups. What are the invariant factors and elementary divisors of $\operatorname{Tor}(M)$?

[^0]
[^0]: Date: 23 March 2012; due Friday, 30 March 2012.

