MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#6

Problem 1 (DF 10.3.7). Let N be a submodule of M. Prove that if both M / N and N are finitely generated, then so is M.
Problem 2 (DF 11.1.8, 11.1.9, 11.2.8). Let V be a vector space over F and let $\phi: V \rightarrow V$ be a linear transformation. A nonzero element $v \in V$ satisfying $\phi(v)=\lambda v$ for some $\lambda \in F$ is called an eigenvector of ϕ with eigenvalue λ.
(a) Prove that for any fixed $\lambda \in F$, the collection of eigenvectors of ϕ with eigenvalue λ, together with 0 , forms a subspace of V.
(b) Suppose for $i=1, \ldots, k$ that $v_{i} \in V$ is an eigenvector of ϕ with eigenvalue λ_{i} and that all of the eigenvalues λ_{i} are distinct. Prove that v_{1}, \ldots, v_{k} are linearly independent. Conclude that any linear transformation on an n-dimensional vector space has at most n distinct eigenvalues.
(c) Prove that if V has a basis consisting of eigenvectors of ϕ, then the matrix representing ϕ with respect to this basis is diagonal. What are the diagonal entries?
(d) Prove that an $n \times n$ matrix A is similar to a diagonal matrix if and only if F^{n} has a basis of eigenvectors for the linear transformation

$$
\begin{aligned}
L(A): F^{n} & \rightarrow F^{n} \\
x & \mapsto A x .
\end{aligned}
$$

Problem 3. Let $\phi: V \rightarrow V$ be a linear transformation over a field F and β a basis of V.
(a) Show that ϕ is invertible if and only if ϕ maps β to a basis of V if and only if the column vectors of $M(\phi)_{\beta}^{\beta}$ are a basis of V.
(b) Suppose that $\# F=q$. Show that

$$
\# G L_{n}(F)=\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right) .
$$

Problem 4 (sorta DF 11.2.35).
(a) Define the trace map

$$
\begin{gathered}
\operatorname{tr}: M_{2}(F) \rightarrow F \\
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto a+d .
\end{gathered}
$$

Show that $t r$ is a linear transformation and determine the matrix of $t r$ with respect to the basis

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

of $M_{2}(F)$.
(b) Generalize part (a) to $\operatorname{tr}: M_{n}(F) \rightarrow F$ for arbitrary $n \in \mathbb{Z}_{>0}$.

Problem 5* (sorta DF 11.1.5). Let $a, b \in \mathbb{R}$ with $a<b$. Let V denote the space of real-valued functions on the closed interval $[a, b]$.
(a) Show that V is isomorphic to an uncountably infinite direct product of copies of \mathbb{R}.
(b) Let $C([a, b]) \subset V$ denote the subspace of continuous functions. Show that for any $g \in C([a, b])$, the function $\phi_{g}: V \rightarrow \mathbb{R}$ defined by $\phi_{g}(f)=\int_{a}^{b} f(t) g(t) d t$ is a linear functional on $C([a, b])$.
(c) Let

$$
W=\mathbb{R}[x]_{\leq 2}=\left\{a_{2} x^{2}+a_{1} x+a_{0}: a_{i} \in \mathbb{R}\right\} \subset C([a, b]) .
$$

Let $\beta=\left\{1, x, x^{2}\right\}$. For each $f^{*} \in \beta^{*} \subset W^{*}$, find a $g(x) \in W$ such that $f^{*}=\phi_{g}$.
Problem 6* (DF 11.3.4-5). Let V be a vector space with basis β.
(a) Show that V^{*} is isomorphic to the direct product of copies of F indexed by β.
(b) If $\# \beta=\infty$, show that β^{*} does not span V^{*}, hence $\operatorname{dim} V^{*}>\operatorname{dim} V$.

