MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#5

Let R be a ring and let M be a (left) R-module.
Problem 1 (DF 10.2.6). Describe the \mathbb{Z}-module $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 21 \mathbb{Z}, \mathbb{Z} / 30 \mathbb{Z})$.
Problem 2 (sorta DF 10.2.7). Let R be commutative. Show that the map $R \rightarrow \operatorname{End}_{R}(M)$ where $r \in R$ maps to the multiplication-by- r endomorphism

$$
\begin{aligned}
\phi_{r}: M & \rightarrow M \\
m & \mapsto r m
\end{aligned}
$$

is a ring homomorphism, and thereby that $\operatorname{End}_{R}(M)$ has the structure of an R-algebra.
Problem 3 (DF 10.2.9-10). Let R be commutative.
(a) Prove that $\operatorname{Hom}_{R}(R, M) \cong M$ as R-modules. [Hint: Show that each element of $\operatorname{Hom}_{R}(R, M)$ is determined by its value on $1 \in R$.]
(b) Consider R as an R-module. Prove that $\operatorname{End}_{R}(R) \cong R$ as rings.

Problem 4. Let $\phi: M \rightarrow M$ be an R-module homomorphism such that $\phi \circ \phi=\phi$. Show that

$$
M=\operatorname{ker} \phi \oplus \operatorname{img} \phi
$$

