MATH 252: ABSTRACT ALGEBRA II HOMEWORK #5

Let R be a ring and let M be a (left) R-module.

Problem 1 (DF 10.2.6). Describe the \mathbb{Z} -module $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/21\mathbb{Z},\mathbb{Z}/30\mathbb{Z})$.

Problem 2 (sorta DF 10.2.7). Let R be commutative. Show that the map $R \to \text{End}_R(M)$ where $r \in R$ maps to the multiplication-by-r endomorphism

$$\phi_r: M \to M$$
$$m \mapsto rm$$

is a ring homomorphism, and thereby that $\operatorname{End}_R(M)$ has the structure of an *R*-algebra.

Problem 3 (DF 10.2.9–10). Let R be commutative.

- (a) Prove that $\operatorname{Hom}_R(R, M) \cong M$ as *R*-modules. [Hint: Show that each element of $\operatorname{Hom}_R(R, M)$ is determined by its value on $1 \in R$.]
- (b) Consider R as an R-module. Prove that $\operatorname{End}_R(R) \cong R$ as rings.

Problem 4. Let $\phi: M \to M$ be an *R*-module homomorphism such that $\phi \circ \phi = \phi$. Show that

 $M = \ker \phi \oplus \operatorname{img} \phi.$

Date: 17 February 2012; due Friday, 24 February 2012.