MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#4

Let R be a ring and let M be a (left) R-module.

Problem 1 (DF 10.1.3, 10.1.6).

(a) Let $r \in R$ and suppose that $r m=0$ for some nonzero $m \in M$. Prove that $r \notin R^{\times}$.
(b) Show that the intersection of any nonempty collection of submodules of an R-module is a submodule.

Problem 2 (DF 10.1.11). Let M be the \mathbb{Z}-module $\mathbb{Z} / 24 \mathbb{Z} \times \mathbb{Z} / 15 \mathbb{Z} \times \mathbb{Z} / 50 \mathbb{Z}$.
(a) Find $\operatorname{ann}(M)$, the annihilator of M in \mathbb{Z}.
(b) Let $I=2 \mathbb{Z}$. Describe the annihilator of I in M as a direct product of cyclic groups.

Problem 3 (sorta DF 10.1.19). Let $V=\mathbb{R}^{2}$, and let $T: V \rightarrow V$ be the linear transformation which is projection onto the y-axis. Show that the only submodules of the $\mathbb{R}[x]$-module corresponding to T are V, the x-axis, the y-axis, and $\{(0,0)\}$.
Problem 4* (DF 10.1.8). An element $m \in M$ is called a torsion element if $r m=0$ for some nonzero $r \in R$. The set of torsion elements is denoted $\operatorname{Tor}(M)$.
(a) Prove that if R is an integral domain, then $\operatorname{Tor}(M)$ is a submodule of M.
(b) Give an example of a ring R and an R-module M such that $\operatorname{Tor}(M)$ is not a submodule.
(c) Show that if R has a zerodivisor then every nonzero R-module M has $\operatorname{Tor}(M) \neq\{0\}$.
(d) M is called a torsion module if $M=\operatorname{Tor}(M)$. Prove that every finite abelian group is a torsion \mathbb{Z}-module. Give an example of an infinite abelian group that is a torsion \mathbb{Z}-module.

[^0]
[^0]: Date: 10 February 2012; due Friday, 17 February 2012.

