MATH 252: ABSTRACT ALGEBRA II HOMEWORK #4

Let R be a ring and let M be a (left) R-module.

Problem 1 (**DF 10.1.3, 10.1.6**).

- (a) Let $r \in R$ and suppose that rm = 0 for some nonzero $m \in M$. Prove that $r \notin R^{\times}$.
- (b) Show that the intersection of any nonempty collection of submodules of an *R*-module is a submodule.

Problem 2 (DF 10.1.11). Let *M* be the \mathbb{Z} -module $\mathbb{Z}/24\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z} \times \mathbb{Z}/50\mathbb{Z}$.

- (a) Find $\operatorname{ann}(M)$, the annihilator of M in \mathbb{Z} .
- (b) Let $I = 2\mathbb{Z}$. Describe the annihilator of I in M as a direct product of cyclic groups.

Problem 3 (sorta DF 10.1.19). Let $V = \mathbb{R}^2$, and let $T : V \to V$ be the linear transformation which is projection onto the *y*-axis. Show that the only submodules of the $\mathbb{R}[x]$ -module corresponding to T are V, the *x*-axis, the *y*-axis, and $\{(0,0)\}$.

Problem 4* (DF 10.1.8). An element $m \in M$ is called a *torsion element* if rm = 0 for some nonzero $r \in R$. The set of torsion elements is denoted Tor(M).

- (a) Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- (b) Give an example of a ring R and an R-module M such that Tor(M) is not a submodule.
- (c) Show that if R has a zerodivisor then every nonzero R-module M has $Tor(M) \neq \{0\}$.
- (d) M is called a *torsion module* if M = Tor(M). Prove that every finite abelian group is a torsion \mathbb{Z} -module. Give an example of an infinite abelian group that is a torsion \mathbb{Z} -module.

Date: 10 February 2012; due Friday, 17 February 2012.