MATH 255: ELEMENTARY NUMBER THEORY HOMEWORK \#11

JOHN VOIGHT

11.1: Quadratic Residues and Nonresidues

Problem 11.1.2. Find all quadratic residues modulo of each of the following integers:
(a) 7
(b) 8
(c) 15

Problem 11.1.5. Evaluate the Legendre symbol $\left(\frac{7}{11}\right)$ using:
(a) Euler's criterion.
(b) Gauss' lemma.

Problem 11.1.6. Let a, b be integers not divisible by the prime p. Show that either one or all three of the integers $a, b, a b$ are quadratic residues modulo p.
Problem 11.1.7. Show that if p is an odd prime, then

$$
\left(\frac{-2}{p}\right)= \begin{cases}1, & \text { if } p \equiv 1,3 \quad(\bmod 8) \\ -1, & \text { if } p \equiv-1,-3 \quad(\bmod 8)\end{cases}
$$

Problem 11.1.10. Show that if b is a positive integer not divisible by the prime p, then

$$
\left(\frac{b}{p}\right)+\left(\frac{2 b}{p}\right)+\left(\frac{3 b}{p}\right)+\cdots+\left(\frac{(p-1) b}{p}\right)=0
$$

Problem 11.1.12. Consider the quadratic congruence $a x^{2}+b x+c \equiv 0(\bmod p)$, where p is prime and $a, b, c \in \mathbb{Z}$ are integers with $p \nmid a$.
(a) Let $p=2$. Determine which quadratic congruences modulo 2 have solutions.
(b) Let p be an odd prime and let $d=b^{2}-4 a c$. Show that the congruence $a x^{2}+b x+c \equiv 0$ $(\bmod p)$ is equivalent to the congruence $y^{2} \equiv d(\bmod p)$, where $y=2 a x+b$. Conclude that if $d \equiv 0(\bmod p)$, then there is exactly one solution x modulo p; if d is a quadratic residue of p, then there are two incongruent solutions; and if d is a quadratic nonresidue of p, then there are no solutions.

Problem 11.1.36*. Show that a prime divisor p of the Fermat number $F_{n}=2^{2^{n}}+1$ must be of the form $2^{n+2} k+1$. [Hint: Show that 2 has order 2^{n+1} modulo p. Then show that $2^{(p-1) / 2} \equiv 1(\bmod p)$ using Theorem 11.6. Conclude that $\left.2^{n+1} \mid(p-1) / 2.\right]$
Computation 11.1.6*. Use numerical evidence to determine for which odd primes p there are more quadratic residues a of p with $1 \leq a \leq(p-1) / 2$ than there are with $(p+1) / 2 \leq$ $a \leq p-1$.

11.2: The Law of Quadratic Reciprocity

Problem 11.2.1. Evaluate each of the following Legendre symbols:
(a) $\left(\frac{3}{53}\right)$
(b) $\left(\frac{7}{79}\right)$

Problem 11.2.3. Show that if p is an odd prime, then

$$
\left(\frac{-3}{p}\right)= \begin{cases}1, & \text { if } p \equiv 1 \quad(\bmod 6) \\ -1, & \text { if } p \equiv-1 \quad(\bmod 6)\end{cases}
$$

Problem 11.2.4. Find a congruence describing all primes for which 5 is a quadratic residue. Problem 11.2.15. The integer $p=1+8 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23=892371481$ is prime. Show that for all primes q with $q \leq 23$, we have $\left(\frac{p}{q}\right)=1$. Conclude that there is no quadratic nonresidue of p less than 29 and that p has no primitive root less than 29 .

