MATH 255: ELEMENTARY NUMBER THEORY HOMEWORK \#10

JOHN VOIGHT

9.1: The Order of an Integer and Primitive Roots

Problem 9.1.A. Determine the order of 10 modulo 13 and the order of 9 modulo 25 .
Problem 9.1.5. Show that the integer 12 has no primitive roots.
Problem 9.1.9. Show that if a^{-1} is an inverse of $a \in(\mathbb{Z} / n \mathbb{Z})^{*}$, then $o\left(a^{-1}\right)=o(a)$, that is to say, the order of a^{-1} modulo n is equal to the order of a modulo n.

Problem 9.1.10. Show that if $a, b \in(\mathbb{Z} / n \mathbb{Z})^{*}$ such that $\operatorname{gcd}(o(a), o(b))=1$, then $o(a b)=$ $o(a) o(b)$.
Problem 9.1.14. Show that if $m \in \mathbb{Z}_{>0}$ and $a \in(\mathbb{Z} / m \mathbb{Z})^{*}$ with $o(a)=m-1$, then m is prime.
Problem 9.1.18*. Let p be a prime divisor of the Fermat number $F_{n}=2^{2^{n}}+1$.
(a) Show that $o(2)=2^{n+1}$ modulo p.
(b) Conclude that $2^{n+1} \mid(p-1)$, so that p must be of the form $2^{n+1} k+1$ for some $k \in \mathbb{Z}$.

Computation 9.1.B*. Let $\pi^{(2)}(x)$ denote the set of primes $p \leq x$ such that 2 is a primitive root modulo p. Compute $\pi^{(2)}(x) / \pi(x)$ for a large $x \in \mathbb{R}_{>0}$. Use this to estimate the probability that 2 is a primitive root modulo p for p a large prime.

9.2: Primitive Roots for Primes

Problem 9.2.1(a)-(b). Find the number of incongruent roots modulo 11 of each of the following polynomials:
(a) $x^{2}+2$.
(b) $x^{2}+10$.

Problem 9.2.5. Find a complete set of incongruent primitive roots of 13 .
Problem 9.2.8. Let r be a primitive root for the prime p with $p \equiv 1(\bmod 4)$. Show that $-r$ is also a primitive root.
Problem 9.2.9. Show that if p is a prime with $p \equiv 1(\bmod 4)$, then there is an integer x such that $x^{2} \equiv-1(\bmod p)$. [Hint: Use Theorem 9.8 to show that there is an integer x of order 4 modulo p.]
Problem 9.2.10.
(a) Find the number of incongruent roots modulo 6 of the polynomial $x^{2}-x$.
(b) Explain why the answer to part (a) does not contradict Lagrange's theorem.

