MATH 255: ELEMENTARY NUMBER THEORY HOMEWORK #7

JOHN VOIGHT

7.1: THE EULER PHI-FUNCTION

Problem 7.1.1. Determine whether each of the following arithmetic functions is completely multiplicative. Prove your answers.

(a) f(n) = 0. (b) f(n) = 2. (c) f(n) = n/2. (d) $f(n) = \log n$. (e) $f(n) = n^2$.

Problem 7.1.3. Show that $\phi(5186) = \phi(5187) = \phi(5188)$.

Problem 7.1.5. Find all positive integers *n* such that $\phi(n) = 6$. Be sure to prove that you have found all solutions.

Problem 7.1.11. For which positive integers n does $\phi(3n) = 3\phi(n)$?

Problem 7.1.14. For which positive integers n does $\phi(n) \mid n$?

Problem 7.1.33^{*}. Prove that $\phi(n) = n \prod_{p|n} (1 - 1/p)$ using the principle of inclusion-exclusion.

Problem 7.1.46. Show that if f and g are multiplicative functions, then fg is also multiplicative, where (fg)(n) = f(n)g(n).

7.2: The Sum and Number of Divisors

Problem 7.2.1. Find the sum of the positive integer divisors of each of the following integers.

- (a) 35
- (b) 196
- (c) 1000

Problem 7.2.4. For which positive integers n is the sum of divisors of n odd?

Problem 7.2.5(a). Find all positive integers n with $\sigma(n) = 12$.

Date: Due Wednesday, 18 March 2009.

Let $\sigma_k(n)$ denote the sum of the *k*th powers of the divisors of *n*, so that $\sigma_k(n) = \sum_{d|n} d^k$. Note that $\sigma_1(n) = \sigma(n)$.

Problem 7.2.20. Find $\sigma_3(4)$, $\sigma_3(6)$, and $\sigma_3(12)$.

Problem 7.2.21. Give a formula for $\sigma_k(p)$ where p is prime.

Problem 7.2.25^{*}. Find all positive integers n such that $\phi(n) + \sigma(n) = 2n$.