MATH 255: ELEMENTARY NUMBER THEORY HOMEWORK \#5

JOHN VOIGHT

4.3: The Chinese Remainder Theorem

Problem 4.3.4(c). Find all the solutions to the following system of linear congruences:

$$
\begin{aligned}
& x \equiv 0 \quad(\bmod 2) \\
& x \equiv 0 \quad(\bmod 3) \\
& x \equiv 1 \quad(\bmod 5) \\
& x \equiv 6
\end{aligned} \quad(\bmod 7) .
$$

Problem 4.3.12. Solve the following ancient Indian problem: If eggs are removed from a basket $2,3,4,5,6$ at a time, there remain, respectively, $1,2,3,4,5$ eggs. But if the eggs are removed 7 at a time, no eggs remain. What is the least number of eggs that could have been in the basket?

Problem 4.3.14*. Show that if $a, b, c \in \mathbb{Z}$ have $\operatorname{gcd}(a, b)=1$, then there is an integer n such that $\operatorname{gcd}(a n+b, c)=1$.
Problem 4.3.A. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integral coefficients. For $m \in \mathbb{Z}>1$, let $\# X(\mathbb{Z} / m \mathbb{Z})$ denote the number of solutions in $\mathbb{Z} / m \mathbb{Z}$ of the congruence

$$
f(x) \equiv 0 \quad(\bmod m)
$$

(a) Prove that if $m=m_{1} m_{2}$, where $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then

$$
\# X(\mathbb{Z} / m \mathbb{Z})=\# X\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \cdot \# X\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)
$$

(b) What can you conclude if $\operatorname{gcd}\left(m_{1}, m_{2}\right)>1$?

4.4: Solving Polynomial Congruences

Problem 4.4.1. Find all the solutions of each of the following congruences:
(a) $x^{2}+4 x+2 \equiv 0(\bmod 7)$
(b) $x^{2}+4 x+2 \equiv 0(\bmod 49)$
(c) $x^{2}+4 x+2 \equiv 0(\bmod 343)$

Problem 4.4.10. How many incongruent solutions are there to the congruence $x^{5}+x-6 \equiv 0$ (mod 144)?
Problem 4.4.A. Let $k \in \mathbb{Z}_{>0}$.
(a) Show that the product of any k consecutive integers is divisible by k !. [Hint: Use a binomial coefficient.]
(b) Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients, let $r \in \mathbb{Z}$. Let $f^{(k)}(x)$ denote the k th derivative of $f(x)$. Show that each coefficient of $f^{(k)}(x)$ is divisible by k. Conclude that for any $r \in \mathbb{Z}, f^{(k)}(r) / k$! is an integer.
Computation 4.4.2*. Find all solutions of $x^{9}+13 x^{3}-x+100336 \equiv 0\left(\bmod 17^{9}\right)$.

