MATH 255: ELEMENTARY NUMBER THEORY HOMEWORK \#2

JOHN VOIGHT

The problems with an asterisk * are optional (as they are potentially challenging!). If you attempt them, they will be graded out of 5 and added to your homework score.

§3.1: Prime Numbers

Problem 3.1.1. Determine which of the following integers are primes.
(a) 101
(b) 103
(c) 107

Problem 3.1.7. Show that if a and n are positive integers with $n>1$ and $a^{n}-1$ is prime, then $a=2$ and n is prime. [Hint: Use the identity $a^{k l}-1=\left(a^{k}-1\right)\left(a^{k(l-1)}+a^{k(l-2)}+\cdots+\right.$ $\left.a^{k}+1\right)$.]

Problem 3.1.8. [This exercise constructs another proof of the infinitude of primes.] Show that the integer $Q_{n}=n!+1$, where n is a positive integer, has a prime divisor greater than n. Conclude that there are infinitely many primes.
Problem 3.1.11. Let $Q_{n}=p_{1} p_{2} \cdots p_{n}+1$, where $p_{1}, p_{2}, \ldots, p_{n}$ are the n smallest primes. Determine the smallest prime factor of Q_{n} for $n=1,2,3,4,5,6$. Do you think that Q_{n} is prime infinitely often? [Note: This is an unresolved question.]
Problem 3.1.23*. Show that if $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where the coefficients are integers, then there is an integer y such that $f(y)$ is composite. [Hint: Assume that $f(x)=p$ is prime, and show that p divides $f(x+k p)$ for all integers k. Conclude that there is an integer y such that $f(y)$ is composite from the fact that a polynomial of degree $n, n>1$, takes on each value at most n times.]

§3.2: The Distribution of Primes

Problem 3.2.2. Find one million consecutive composite integers.
Problem 3.2.3. Show that there are no "prime triplets", that is, primes $p, p+2$, and $p+4$, other than $3,5,7$.

Problem 3.2.10. Verify Goldbach's conjecture for each of the following values of n.
(a) 50
(c) 102
(e) 200

Problem 3.2.12. Show that every integer greater than 11 is the sum of two composite integers.

Problem 3.2.A. Show that $x^{2}+3 x-\log x \sim x^{2}$.
Computation 3.2.3*. Verify Goldbach's conjecture for all even positive integers less than 10000.

