MATH 255: ELEMENTARY NUMBER THEORY HOMEWORK #1

JOHN VOIGHT

§1.1: NUMBERS, SEQUENCES, AND SUMS

Problem 1.1.1. Determine whether each of the following sets is well-ordered. If so, what is its least element?

- (a) The set of integers greater than 3.
- (b) The set of even positive integers.
- (c) The set of positive rational numbers.
- (d) The set of positive rational numbers that can be written in the form a/2, where a is a positive integer.
- (e) The set of nonnegative rational numbers.

Problem 1.1.4. For each of the following statements, either give a proof or a counterexample.

- (a) The sum of a rational and an irrational number is irrational.
- (b) The sum of two irrational numbers is irrational.
- (c) The product of a rational number and an irrational number is irrational.
- (d) The product of two irrational numbers is irrational.

Problem 1.1.7(a)(c)(e). Find the following values of the floor function.

- (a) $\lfloor 1/4 \rfloor$.
- (c) |22/7|.
- (e) $\lfloor \lfloor 1/2 \rfloor + \lfloor 1/2 \rfloor \rfloor$.

$\S1.2$: Sums and Products

Problem 1.2.8. The *pentagonal numbers* $p_1, p_2, \ldots, p_k, \ldots$ are the integers that count the number of dots in k nested pentagons. Show that $p_1 = 1$ and $p_k = p_{k-1} + (3k-2)$ for $k \ge 2$. Conclude that $p_n = \sum_{k=1}^n (3k-2)$.

Problem 1.2.9. Prove that the sum of the (n-1)th triangular number and the *n*th square number is the *n*th pentagonal number.

Date: Due Wednesday, 21 January 2009.

§1.3: MATHEMATICAL INDUCTION

Problem 1.3.4. Conjecture a formula for

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)}$$

from the value of this sum for small integers n. Prove that your conjecture is correct using mathematical induction.

$\S1.5$: Divisibility

Problem 1.5.6. What can you conclude if a and b are nonzero integers such that $a \mid b$ and $b \mid a$?

Problem 1.5.7. Show that if $a, b, c, d \in \mathbb{Z}$ with a, c nonzero, such that $a \mid b$ and $c \mid d$, then $ac \mid bd$.

Problem 1.5.8. Are there $a, b, c \in \mathbb{Z}$ such that $a \mid bc$ but $a \nmid b$ and $a \nmid c$?

Problem 1.5.24. Find the number of positive integers not exceeding 1000 that are not divisible by 3 or 5.

Problem 1.5.34. Use mathematical induction to show that $n^5 - n$ is divisible by 5 for every positive integer n.