MATH 255: ELEMENTARY NUMBER THEORY EXAM \#2

Name

\qquad

Please complete the following problems in the space provided. Please include all relevant intermediate calculations and explain your work.

Problem 1.

(a) Find a root of the polynomial $x^{5}+10$ modulo 121.
(b)* How many roots does $x^{5}+10$ have modulo $11^{4}=14641 ?$

Problem 2. (Short answer.)
(a) How many primitive roots are there modulo the prime 257 ?
(b) Compute the Legendre symbol $\left(\frac{17}{47}\right)$.
(c) What are the last two decimal digits of 7^{642} ?
(d) Let f be a multiplicative function with $f(1)=0$. Show that $f(n)=0$ for all n.
(e) If a is a quadratic residue modulo p, show that a is not a primitive root modulo p.

Problem 3. Show that $a^{6}-1$ is divisible by 168 whenever $\operatorname{gcd}(a, 42)=1$.

Problem 4. Let n be a perfect number. Show that for all $k \in \mathbb{Z}_{\geq 2}$ that $k n$ is abundant.

Problem 5. The integer $n=p q=280171$ is used in an RSA cryptosystem. Through espionage, you determine that

$$
\sigma(n)=281232
$$

Find p and q.

Problem 6^{*}. Let p be an odd prime and let r be a primitive root modulo p. Show that the order of $r+p$ modulo p^{2} is either $p-1$ or $p(p-1)$.

