MATH 255: ELEMENTARY NUMBER THEORY EXAM #2

Name _____

Please complete the following problems in the space provided. Please include all relevant intermediate calculations and explain your work.

Problem 1.

(a) Find a root of the polynomial $x^5 + 10$ modulo 121.

(b)* How many roots does $x^5 + 10$ have modulo $11^4 = 14641$?

Problem 2. (Short answer.)

(a) How many primitive roots are there modulo the prime 257?

(b) Compute the Legendre symbol $\left(\frac{17}{47}\right)$.

(c) What are the last two decimal digits of 7^{642} ?

(d) Let f be a multiplicative function with f(1) = 0. Show that f(n) = 0 for all n.

(e) If a is a quadratic residue modulo p, show that a is not a primitive root modulo p.

Problem 3. Show that $a^6 - 1$ is divisible by 168 whenever gcd(a, 42) = 1.

Problem 4. Let n be a perfect number. Show that for all $k \in \mathbb{Z}_{\geq 2}$ that kn is abundant.

Problem 5. The integer n = pq = 280171 is used in an RSA cryptosystem. Through espionage, you determine that

 $\sigma(n) = 281232.$

Find p and q.

Problem 6^{*}. Let p be an odd prime and let r be a primitive root modulo p. Show that the order of r + p modulo p^2 is either p - 1 or p(p - 1).