MATH 255: ELEMENTARY NUMBER THEORY EXAM \#2

Problem 1.

(a) Find a root of the polynomial $x^{5}+10$ modulo 121.

Solution. We see that $1^{5}+10 \equiv 0(\bmod 11)$, so $x=1$ is a root modulo 11 . We use Hensel's lemma to find a root modulo $11^{2}=121$: if $f(x)=x^{5}+10$ then $f^{\prime}(x)=5 x^{4}$; since $f^{\prime}(1)=5 \not \equiv 0(\bmod 11)$, we compute that $f^{\prime}(1)^{-1}=5^{-1} \equiv-2(\bmod 11)$, so a solution modulo 121 is given by

$$
x \equiv 1-f(1) / f^{\prime}(1) \equiv 1+22 \equiv 23 \quad(\bmod 121) .
$$

(b)* How many roots does $x^{5}+10$ have modulo $11^{4}=14641$?

Solution. By classwork, we know that $x^{5}+10 \equiv x^{5}-1(\bmod 11)$ has exactly 5 solutions, since $5 \mid \phi(11)=11-1=10$. For each of these solutions, we have $f^{\prime}(r)=5 r^{4} \not \equiv 0(\bmod 11)$, else $r \equiv 0$ (mod 11) which is clearly impossible. Therefore, by Hensel's lemma, each of these lifts to a unique solution modulo 11^{k} for any $k \geq 2$. In particular, we find that there are exactly 5 solutions modulo 11^{4}.

Problem 2. (Short answer.)
(a) How many primitive roots are there modulo the prime 257 ?

Solution. There are $\phi(\phi(257))=\phi(257-1)=\phi(256)=\phi\left(2^{8}\right)=2^{7}=128$ primitive roots.
(b) Compute the Legendre symbol $\left(\frac{17}{47}\right)$.

Solution. We have $\left(\frac{17}{47}\right)=\left(\frac{47}{17}\right)=\left(\frac{13}{17}\right)=\left(\frac{17}{13}\right)=\left(\frac{4}{13}\right)=\left(\frac{2^{2}}{13}\right)=1$.
(c) What are the last two decimal digits of 7^{642} ?

Solution. We need to compute $7^{642}(\bmod 100)$. Note that $\phi(100)=\phi(4) \phi(25)=40$, and since $\operatorname{gcd}(7,100)=1$ we have $7^{40} \equiv 1(\bmod 100)$. Thus $7^{642} \equiv\left(7^{40}\right)^{16} 7^{2} \equiv 49(\bmod 100)$, so the last two digits are 49.
(d) Let f be a multiplicative function with $f(1)=0$. Show that $f(n)=0$ for all n.

Solution. We have $f(n)=f(1) f(n)=0$, since $\operatorname{gcd}(1, n)=1$ for all integers n.
(e) If a is a quadratic residue modulo p, show that a is not a primitive root modulo p.

Solution. Recall that a is a quadratic residue if and only if $a^{(p-1) / 2} \equiv 1(\bmod p)$. In particular, the order of a divides $(p-1) / 2$ so cannot be equal to $p-1$.

Problem 3. Show that $a^{6}-1$ is divisible by 168 whenever $\operatorname{gcd}(a, 42)=1$.
Solution. By the Chinese reminader theorem and the fact that $168=8 \cdot 3 \cdot 7$, it is enough to show this congruence holds modulo $8,3,7$. Modulo 8 and 3 , we have $a^{2} \equiv 1(\bmod 8)$ and $a^{2} \equiv 1(\bmod 3)$ by inspection since $\operatorname{gcd}(a, 24)=1$. Thus $a^{6} \equiv\left(a^{2}\right)^{3} \equiv 1(\bmod 24)$ as well. Modulo 7 , we have $a^{6} \equiv 1(\bmod 7)$ by Fermat's little theorem. The result follows.

Problem 4. Let n be a perfect number. Show that for all $k \in \mathbb{Z}_{\geq 2}$ that $k n$ is abundant.

Solution. First suppose $\operatorname{gcd}(k, n)=1$. Then $\sigma(k n)=\sigma(k) \sigma(n)=\sigma(k)(2 n)$ since σ is multiplicative. But $\sigma(k)>k$ for all k (since it is the sum of divisors, and k is a divisor!), so $\sigma(k n)>k(2 n)=2 n k$, so $k n$ is abundant. If you got this far, that's good enough for me!

More generally, it is cleanest to consider the abundance function

$$
h(m)=\frac{\sigma(m)}{m} .
$$

We need to show that if $m \mid n$ then $h(m) \leq h(n)$, with equality if and only if $m=n$. (Apply this with $n \mid k n$, and note that n is abundant if and only if $h(n)=2$.) By definition, we have

$$
h(n)=\sum_{d \mid n} \frac{d}{n} .
$$

But if $d \mid n$, then $(n / d) \mid n$ and $(n / d) / n=1 / d$, so

$$
h(n)=\sum_{d \mid n} \frac{1}{d} .
$$

But then obviously

$$
h(m)=\sum_{d \mid m} \frac{1}{d} \leq \sum_{d \mid n} \frac{1}{d}=h(n)
$$

if $m \mid n$ since every divisor of m is a divisor of n, and equality holds if and only if $m=n$.
Problem 5. The integer $n=p q=280171$ is used in an RSA cryptosystem. Through espionage, you determine that

$$
\sigma(n)=281232
$$

Find p and q.
Solution. Since $n=p q$, we have $\sigma(n)=p q+p+q+1$. Thus $\sigma(n)-n-1=p+q=1060$. Therefore the polynomial

$$
(x-p)(x-q)=x^{2}-(p+q) x+p q=x^{2}-1060 x+280171
$$

has p, q as roots. By the quadratic formula, we compute that $p, q=530 \pm(1 / 2) \sqrt{1060^{2}-4(280171)}=$ $530 \pm 27=503,557$.

Problem 6* Let p be an odd prime and let r be a primitive root modulo p. Show that the order of $r+p$ modulo p^{2} is either $p-1$ or $p(p-1)$.
Solution. Let k be the order of $r \operatorname{modulo} p^{2}$, so that $r^{k} \equiv 1\left(\bmod p^{2}\right)$ (and k is the smallest such positive integer). Then it follows that $r^{k} \equiv 1(\bmod p)$ as well. But r is a primitive root, so we must have $(p-1) \mid k$. On the other hand, by Euler's theorem we have $r^{\phi\left(p^{2}\right)}=r^{p(p-1)} \equiv 1\left(\bmod p^{2}\right)$, so $k \mid p(p-1)$. There is nowhere left to run: we must have $k=(p-1), p(p-1)$.

