
MATH 255: ELEMENTARY NUMBER THEORY
EXAM #2

Problem 1.

(a) Find a root of the polynomial x5 + 10 modulo 121.

Solution. We see that 15 + 10 ≡ 0 (mod 11), so x = 1 is a root modulo 11. We use Hensel’s lemma
to find a root modulo 112 = 121: if f(x) = x5 + 10 then f ′(x) = 5x4; since f ′(1) = 5 6≡ 0 (mod 11),
we compute that f ′(1)−1 = 5−1 ≡ −2 (mod 11), so a solution modulo 121 is given by

x ≡ 1− f(1)/f ′(1) ≡ 1 + 22 ≡ 23 (mod 121).

(b)∗ How many roots does x5 + 10 have modulo 114 = 14641?

Solution. By classwork, we know that x5 + 10 ≡ x5 − 1 (mod 11) has exactly 5 solutions, since
5 | φ(11) = 11 − 1 = 10. For each of these solutions, we have f ′(r) = 5r4 6≡ 0 (mod 11), else r ≡ 0
(mod 11) which is clearly impossible. Therefore, by Hensel’s lemma, each of these lifts to a unique
solution modulo 11k for any k ≥ 2. In particular, we find that there are exactly 5 solutions modulo
114.

Problem 2. (Short answer.)

(a) How many primitive roots are there modulo the prime 257?

Solution. There are φ(φ(257)) = φ(257− 1) = φ(256) = φ(28) = 27 = 128 primitive roots.

(b) Compute the Legendre symbol
(

17
47

)
.

Solution. We have
(

17
47

)
=

(
47
17

)
=

(
13
17

)
=

(
17
13

)
=

(
4
13

)
=

(
22

13

)
= 1.

(c) What are the last two decimal digits of 7642?

Solution. We need to compute 7642 (mod 100). Note that φ(100) = φ(4)φ(25) = 40, and since
gcd(7, 100) = 1 we have 740 ≡ 1 (mod 100). Thus 7642 ≡ (740)1672 ≡ 49 (mod 100), so the last two
digits are 49.

(d) Let f be a multiplicative function with f(1) = 0. Show that f(n) = 0 for all n.

Solution. We have f(n) = f(1)f(n) = 0, since gcd(1, n) = 1 for all integers n.

(e) If a is a quadratic residue modulo p, show that a is not a primitive root modulo p.

Solution. Recall that a is a quadratic residue if and only if a(p−1)/2 ≡ 1 (mod p). In particular, the
order of a divides (p− 1)/2 so cannot be equal to p− 1.

Problem 3. Show that a6 − 1 is divisible by 168 whenever gcd(a, 42) = 1.

Solution. By the Chinese reminader theorem and the fact that 168 = 8 · 3 · 7, it is enough to show this
congruence holds modulo 8, 3, 7. Modulo 8 and 3, we have a2 ≡ 1 (mod 8) and a2 ≡ 1 (mod 3) by inspection
since gcd(a, 24) = 1. Thus a6 ≡ (a2)3 ≡ 1 (mod 24) as well. Modulo 7, we have a6 ≡ 1 (mod 7) by Fermat’s
little theorem. The result follows.

Problem 4. Let n be a perfect number. Show that for all k ∈ Z≥2 that kn is abundant.
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Solution. First suppose gcd(k, n) = 1. Then σ(kn) = σ(k)σ(n) = σ(k)(2n) since σ is multiplicative. But
σ(k) > k for all k (since it is the sum of divisors, and k is a divisor!), so σ(kn) > k(2n) = 2nk, so kn is
abundant. If you got this far, that’s good enough for me!

More generally, it is cleanest to consider the abundance function

h(m) =
σ(m)

m
.

We need to show that if m | n then h(m) ≤ h(n), with equality if and only if m = n. (Apply this with
n | kn, and note that n is abundant if and only if h(n) = 2.) By definition, we have

h(n) =
∑
d|n

d

n
.

But if d | n, then (n/d) | n and (n/d)/n = 1/d, so

h(n) =
∑
d|n

1
d
.

But then obviously

h(m) =
∑
d|m

1
d
≤

∑
d|n

1
d

= h(n)

if m | n since every divisor of m is a divisor of n, and equality holds if and only if m = n.

Problem 5. The integer n = pq = 280171 is used in an RSA cryptosystem. Through espionage, you
determine that

σ(n) = 281232.

Find p and q.

Solution. Since n = pq, we have σ(n) = pq + p + q + 1. Thus σ(n) − n − 1 = p + q = 1060. Therefore the
polynomial

(x− p)(x− q) = x2 − (p + q)x + pq = x2 − 1060x + 280171
has p, q as roots. By the quadratic formula, we compute that p, q = 530 ± (1/2)

√
10602 − 4(280171) =

530± 27 = 503, 557.

Problem 6∗. Let p be an odd prime and let r be a primitive root modulo p. Show that the order of r + p
modulo p2 is either p− 1 or p(p− 1).

Solution. Let k be the order of r modulo p2, so that rk ≡ 1 (mod p2) (and k is the smallest such positive
integer). Then it follows that rk ≡ 1 (mod p) as well. But r is a primitive root, so we must have (p− 1) | k.
On the other hand, by Euler’s theorem we have rφ(p2) = rp(p−1) ≡ 1 (mod p2), so k | p(p − 1). There is
nowhere left to run: we must have k = (p− 1), p(p− 1).


