MATH 255: ELEMENTARY NUMBER THEORY EXAM \#1

Name

\qquad

Please complete the following problems in the space provided. Please include all relevant intermediate calculations and explain your work.

Problem 1.

(a) Compute $\operatorname{gcd}(24,103)$.
(b) Find integers $x, y \in \mathbb{Z}$ such that $24 x+103 y=1$ and x is divisible by 5 .

Problem 2. For any integer $a \in \mathbb{Z}$, prove that $\operatorname{gcd}(3 a+5, a+2)=1$.

Problem 3. Let $m \in \mathbb{Z}_{>0}$ be a positive integer. Show (by induction) that for all $n \in \mathbb{Z}_{\geq 0}$, we have

$$
(1+m)^{n} \equiv 1+m n \quad\left(\bmod m^{2}\right) .
$$

Problem 4. Let $n \in \mathbb{Z}_{>4}$. Show that $n \mid(n-1)$! if and only if n is composite.

Problem 5. Show that $\sqrt{1+\sqrt{2}}$ is irrational.

Problem 6 (Bonus). A random integer n is chosen between 1 and 10000, inclusive. Approximate the probability that n is odd and composite. [Hint: $\log (10) \approx 2.5$.]

