MATH 255: ELEMENTARY NUMBER THEORY EXAM \#1

Problem 1.

(a) Compute $\operatorname{gcd}(24,103)$.
(b) Find integers $x, y \in \mathbb{Z}$ such that $24 x+103 y=1$ and x is divisible by 5 .

Solution. The Euclidean algorithm gives $103=4 \cdot 24+7,24=3 \cdot 7+3$ and $7=2 \cdot 3+1$, $\operatorname{so} \operatorname{gcd}(24,103)=1$. For (b), we write

$$
1=7-2 \cdot 3=7-2(24-3 \cdot 7)=7 \cdot 7-2 \cdot 24=7(103-4 \cdot 24)-2 \cdot 24=-30 \cdot 24+7 \cdot 103
$$

so $x=-30$ and $y=7$ and indeed $5 \mid 30$.
Problem 2. For any integer $a \in \mathbb{Z}$, prove that $\operatorname{gcd}(3 a+5, a+2)=1$.
Solution. By Euler's lemma, we have

$$
\operatorname{gcd}(3 a+5, a+2)=\operatorname{gcd}(3 a+5-3(a+2), a+2)=\operatorname{gcd}(-1, a+2)=1
$$

Problem 3. Let $m \in \mathbb{Z}_{>0}$ be a positive integer. Show (by induction) that for all $n \in \mathbb{Z}_{\geq 0}$, we have

$$
(1+m)^{n} \equiv 1+m n \quad\left(\bmod m^{2}\right)
$$

Solution. The theorem is true for $n=0$ since $(1+m)^{0}=1 \equiv 1+0 n\left(\bmod m^{2}\right)$. Suppose it is true for n; we show it is true for $n+1$. We have

$$
(1+m)^{n+1}=(1+m)^{n}(1+m) \equiv(1+m n)(1+m)=1+m n+m+m^{2} n \equiv 1+m(n+1) \quad\left(\bmod m^{2}\right)
$$

so the result indeed holds by induction.
Problem 4. Let $n \in \mathbb{Z}_{>4}$. Show that $n \mid(n-1)$! if and only if n is composite.
Solution. First, suppose $n=p$ is prime. Then $p \nmid(p-1)$!, since every prime divisor of $(p-1)$! is at most $p-1$, which is smaller than p.

Now suppose $n=a b$ is composite with $1<a, b<n$. If $a \neq b$, then since $a, b<n$, each occurs in the product $(n-1)$! (which is, after all, the product of all integers from 1 to $n-1$), so indeed $n \mid(n-1)$!. If $a=b>2$, then since $2 a<a b=n$, both a and $2 a$ occur in the product $(n-1)$! so $a^{2}=n \mid(n-1)!$. If $a=b=2$, then $n=4$ and then the statement is not true: $4 \nmid 3!=6$.

Problem 5. Show that $\sqrt{1+\sqrt{2}}$ is irrational.
Solution. Suppose $a=\sqrt{1+\sqrt{2}} \in \mathbb{Q}$. Then $1+\sqrt{2}=a^{2} \in \mathbb{Q}$ and $\sqrt{2}=a^{2}-1 \in \mathbb{Q}$. But this is a contradiction, since $\sqrt{2} \notin \mathbb{Q}$: if $\sqrt{2}=p / q$ with $\operatorname{gcd}(p, q)=1$ then $2 q^{2}=p^{2}$ so $2 \mid p$ but then $4 \mid p^{2}=2 q^{2}$ so $2 \mid q$, a contradiction.

Problem 6 (Bonus). A random integer n is chosen between 1 and 10000, inclusive. Approximate the probability that n is odd and composite. [Hint: $\log (10) \approx 2.5$.]

Solution. The set of odd, composite integers is obtained by taking away the set of even integers and the set of primes, and the intersection between these two sets is only 1 so as an approximation (!) they are disjoint. There are $\pi(10000)=\pi\left(10^{4}\right) \approx 10^{4} / \log \left(10^{4}\right) \approx 10^{4} / 10=1000$ primes and 5000 even integers, so there are about 4000 odd, composite integers up to 10000 , and so the probability is about 40%.

In fact, this approximation is pretty good: the exact percentage is 37.72%.

