MATH 255: ELEMENTARY NUMBER THEORY EXAM \#1 REVIEW

Problem 1. Show that if $n \equiv 3(\bmod 4)$, then n cannot be the sum of the squares of two integers.
Problem 2. Show that if $b \equiv c(\bmod m)$, then $\operatorname{gcd}(b, m)=\operatorname{gcd}(c, m)$.
Problem 3. For which integers n is it true that $n-2$ divides $2 n^{2}-1$?
Problem 4. Show that the set $S \subset \mathbb{R}_{>0}$ of positive irrational numbers is not well-ordered.
Problem 5. Compute the inverse of 17 modulo 31 , and solve the congruence $17 x \equiv 10$ $(\bmod 31)$.
Problem 6. Show that if p is an odd prime and a is a positive integer not divisible by p, then the congruence $x^{2} \equiv a(\bmod p)$ has either no solution or exactly two incongruent solutions.

Problem 7. An integer x is randomly chosen between 100 and 1000. Estimate the probability that x is prime. [Hint: $\log (10) \approx 2.5$.]
Problem 8. Show that $\sqrt{2}+\sqrt{3}$ is irrational.
Problem 9. Show that if a and b are integers such that $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a^{n}, b^{n}\right)=1$.

