MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#6

Problem 1 (DF 14.1.5). Determine the group $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q})$ explicitly.
Problem 2 (DF 14.2.3). Determine the Galois group of $\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right)$. Determine all the subfields of the splitting field of this polynomial.
Problem 3 (DF 14.2.4-5). Let p be prime.
(a) Prove that $K=\mathbb{Q}\left(\zeta_{p}, \sqrt[p]{2}\right)$ is the splitting field of $x^{p}-2$.
(b) Show that $\operatorname{Gal}(K / \mathbb{Q})$ is isomorphic to the group of matrices

$$
\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right): a, b \in \mathbb{F}_{p}, a \neq 0\right\} \subset G L_{2}\left(\mathbb{F}_{p}\right)
$$

Problem 4 (DF 14.2.14). Let $K=\mathbb{Q}(\sqrt{2+\sqrt{2}})$.
(a) Show that $[K: \mathbb{Q}]=4$.
(b) Show that K is Galois and $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 4 \mathbb{Z}$.

Problem 5. Let K / \mathbb{Q} be a finite extension.
(a) Prove that $\# \operatorname{Hom}(K, \mathbb{C})=[K: \mathbb{Q}]$. [Hint: Use induction on $[K: \mathbb{Q}]$, and follow the proof from class.]
(b) Let L / K be a finite extension. Prove that every embedding $K \hookrightarrow \mathbb{C}$ extends to $[L: K]$ embeddings of $L \hookrightarrow \mathbb{C}$. [Hint: Modify the proof as in (a).]

