MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#4B

Problem 4 (DF 12.2.3-4).
(a) Prove that two 2×2 matrices over F which are not scalar matrices are similar if and only if they have the same characteristic polynomial.
(b) Prove that two 3×3 matrices are similar if and only if they have the same characteristic and minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.

Problem 5 (DF 12.2.10). Find all similarity classes of 6×6 matrices over \mathbb{Q} with minimal polynomial $(x+2)^{2}(x-1)$. [It suffices to give all lists of invariant factors and write out some of their corresponding matrices.]
Problem 6 (DF 12.3.2). Prove that if $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of the $n \times n$ matrix A then $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$ are the eigenvalues of A^{k} for any $k \geq 0$.
Problem 7 (DF 12.3.17). Prove that any matrix A is similar to its transpose A^{t}.
Problem 8 (DF 12.3.22). Prove that any matrix A with entries in \mathbb{C} which satisfies $A^{3}=A$ can be diagonalized. Is the same statement true over any field F ?

