MATH 252: ABSTRACT ALGEBRA II HOMEWORK #4A

Problem 1 (DF 12.1.2). Let R be an integral domain and let M be an R-module. The rank of M is the maximal number of R-linearly independent elements of M.

- (a) Suppose that M has rank n and that x_1, \ldots, x_n is any maximal set of R-linearly indepedent elements of M. Let $N = Rx_1 + \cdots + Rx_n$ be the R-submodule generated by x_1, \ldots, x_n . Prove that N is isomorphic to R^n and that the quotient M/N is a torsion R-module. [Hint: Show that the map $R^n \to M$ which sends the ith standard basis vector to x_i is an isomorphism of R-modules.]
- (b) Prove conversely that if M contains a submodule N that is free of rank n (i.e., $N \cong \mathbb{R}^n$) such that the quotient M/N is a torsion R-module then M has rank n. [Hint: Let y_1, \ldots, y_{n+1} be any n+1 elements of M. Use the fact that M/N is torsion to write r_iy_i as a linear combination of a basis for N for some nonzero elements r_i of R. Use an argument like Proposition 12.1.3 to show that the r_iy_i , and hence also the y_i , are linearly dependent.]

Problem 2 (DF 12.1.5). Let $R = \mathbb{Z}[x]$ and let M = (2, x) be the ideal generated by 2 and x, considered as a submodule of R. Show that $\{2, x\}$ is not a basis of M. [Hint: Find a nontrivial R-linear dependence between these two elements.] Show that the rank of M is 1 but that M is not free of rank 1.

Problem 3 (DF 12.1.13). If M is a finitely generated module over a PID, describe the structure of $M/\operatorname{Tor}(M)$.

Date: 25 February 2008; due Wednesday, 6 March 2008.

1