MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#3B

Problem 4 (sorta DF 11.1.5). Let $a, b \in \mathbb{R}$ with $a<b$. Let V denote the space of real-valued functions on the closed interval $[a, b]$.
(a) Show that V is an infinite dimensional vector space over \mathbb{R}, and hence is isomorphic to an (uncountably) infinite direct product of copies of \mathbb{R}.
(b) Let $C([a, b]) \subset V$ denote the subspace of continuous functions. Show that for any $g \in C([a, b])$, the function $\phi_{g}: V \rightarrow \mathbb{R}$ defined by $\phi_{g}(f)=\int_{a}^{b} f(t) g(t) d t$ is a linear functional on $C([a, b])$.
(c) Let

$$
W=\mathbb{R}[x]_{\leq 2}=\left\{a_{2} x^{2}+a_{1} x+a_{0}: a_{i} \in \mathbb{R}\right\} \subset C([a, b])
$$

Let $\beta=\left\{1, x, x^{2}\right\}$. For each $f^{*} \in \beta^{*} \subset W^{*}$, find a $g(x) \in W$ such that $f^{*}=\phi_{g}$.
Problem 5 (DF 11.3.4-5). Let V be a vector space with basis β.
(a) Show that V^{*} is isomorphic to the direct product of copies of F indexed by β.
(b) If $\# \beta=\infty$, show that β^{*} does not span V^{*}, hence $\operatorname{dim} V^{*}>\operatorname{dim} V$.

Problem 6. Let R be a commutative ring.
(a) Prove that for all $A, B \in M_{n}(R)$, we have $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. [Hint: Feel free to reproduce the one in the book, if you can follow it, or any other from your favorite linear algebra book if it applies over a ring R.]
(b) Prove that $A \in M_{n}(R)$ is invertible if and only if $\operatorname{det}(A) \in R^{\times}$.

