MATH 252: ABSTRACT ALGEBRA II HOMEWORK #3B

Problem 4 (sorta DF 11.1.5). Let $a, b \in \mathbb{R}$ with a < b. Let V denote the space of real-valued functions on the closed interval [a, b].

- (a) Show that V is an infinite dimensional vector space over \mathbb{R} , and hence is isomorphic to an (uncountably) infinite direct product of copies of \mathbb{R} .
- (b) Let $C([a, b]) \subset V$ denote the subspace of continuous functions. Show that for any $g \in C([a, b])$, the function $\phi_g : V \to \mathbb{R}$ defined by $\phi_g(f) = \int_a^b f(t)g(t) dt$ is a linear functional on C([a, b]).
- (c) Let $W = \mathbb{R}[x]_{\leq 2} = \{a_2x^2 + a_1x + a_0 : a_i \in \mathbb{R}\} \subset C([a, b]).$ Let $\beta = \{1, x, x^2\}$. For each $f^* \in \beta^* \subset W^*$, find a $g(x) \in W$ such that $f^* = \phi_a$.

Problem 5 (DF 11.3.4–5). Let V be a vector space with basis β .

- (a) Show that V^* is isomorphic to the direct product of copies of F indexed by β .
- (b) If $\#\beta = \infty$, show that β^* does not span V^* , hence dim $V^* > \dim V$.

Problem 6. Let R be a commutative ring.

- (a) Prove that for all $A, B \in M_n(R)$, we have $\det(AB) = \det(A) \det(B)$. [Hint: Feel free to reproduce the one in the book, if you can follow it, or any other from your favorite linear algebra book if it applies over a ring R.]
- (b) Prove that $A \in M_n(R)$ is invertible if and only if $\det(A) \in R^{\times}$.

Date: 18 February 2008; due Friday, 29 February 2008.