MATH 252: ABSTRACT ALGEBRA II HOMEWORK \#3A

Problem 1 (DF 11.1.8, 11.1.9, 11.2.8). Let V be a vector space over F and let $\phi: V \rightarrow V$ be a linear transformation. A nonzero element $v \in V$ satisfying $\phi(v)=\lambda v$ for some $\lambda \in F$ is called an eigenvector of ϕ with eigenvalue λ.
(a) Prove that for any fixed $\lambda \in F$, the collection of eigenvectors of ϕ with eigenvalue λ, together with 0 , forms a subspace of V.
(b) Suppose for $i=1, \ldots, k$ that $v_{i} \in V$ is an eigenvector of ϕ with eigenvalue λ_{i} and that all of the eigenvalues λ_{i} are distinct. Prove that v_{1}, \ldots, v_{k} are linearly independent. Conclude that any linear transformation on an n-dimensional vector space has at most n distinct eigenvalues.
(c) Prove that if V has a basis consisting of eigenvectors of ϕ, then the matrix representing ϕ with respect to this basis is diagonal. What are the diagonal entries?
(d) Prove that an $n \times n$ matrix A is similar to a diagonal matrix if and only if V has a basis of eigenvectors for $L(A)$.

Problem 2. Let $\phi: V \rightarrow V$ be a linear transformation over a field F and let β be a basis of V.
(a) Show that ϕ is invertible if and only if ϕ maps β to a basis of V if and only if the column vectors of $M(\phi)_{\beta}$ are a basis of V.
(b) Suppose that $\# F=q$. Show that

$$
\# G L_{n}(V)=\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right)
$$

Problem 3 (sorta DF 11.2.35).
(a) Define the trace map

$$
\begin{gathered}
\operatorname{tr}: M_{2}(F) \rightarrow F \\
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto a+d
\end{gathered}
$$

Show that tr is a linear transformation and determine the matrix of tr with respect to the basis

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

of $M_{2}(F)$.
(b) Generalize part (a) to $\operatorname{tr}: M_{n}(F) \rightarrow F$ for arbitrary $n \in \mathbb{Z}_{>0}$.

