MATH 252: ABSTRACT ALGEBRA II HOMEWORK #2

Let R be a ring and let M be a (left) R-module.

Problem 1 (DF 10.1.1, 10.1.3).

- (a) Prove that 0m = 0 and (-1)m = -m for all $m \in M$.
- (b) Let $r \in R$ and suppose that rm = 0 for some nonzero $m \in M$. Prove that $r \notin R^{\times}$.

Problem 2 (DF 10.1.11). Let M be the abelian group (i.e., \mathbb{Z} -module) $\mathbb{Z}/24\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z} \times \mathbb{Z}/50\mathbb{Z}$.

- (a) Find Ann(M), the annihilator of M in \mathbb{Z} .
- (b) Let $I = 2\mathbb{Z}$. Describe the annihilator of I in M as a direct product of cyclic groups.

Problem 3 (DF 10.1.8, 10.2.8, 10.3.4). An element $m \in M$ is called a *torsion element* if rm = 0 for some nonzero $r \in R$. The set of torsion elements is denoted Tor(M).

- (a) Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- (b) Give an example of a ring R and an R-module M such that Tor(M) is not a submodule. [Hint: Consider the torsion elements in M = R.]
- (c) Show that if R is not an integral domain, then every nonzero R-module M has $Tor(M) \neq \{0\}$.
- (d) Let $\phi: M \to N$ be an *R*-module homomorphism. Prove that $\phi(\operatorname{Tor}(M)) \subset \operatorname{Tor}(N)$.
- (e) M is called a *torsion module* if M = Tor(M). Prove that every finite abelian group is a torsion \mathbb{Z} -module. Give an example of an infinite abelian group that is a torsion \mathbb{Z} -module.

Problem 4 (sorta DF 10.1.19). Let $V = \mathbb{R}^2$, and let $T : V \to V$ be the linear transformation which is projection onto the *y*-axis. Show that the only submodules of the $\mathbb{R}[x]$ -module corresponding to T are V, the *x*-axis, the *y*-axis, and $\{(0,0)\}$.

Problem 5 (DF 10.2.6). Describe the \mathbb{Z} -module $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/21\mathbb{Z},\mathbb{Z}/30\mathbb{Z})$.

Problem 6 (sorta DF 10.2.7). Let R be commutative. Show that the map $R \to \text{End}_R(M)$ where $r \in R$ maps to the multiplication-by-r endomorphism

$$\phi_r: M \to M$$
$$m \mapsto rm$$

is a ring homomorphism.

Problem 7 (DF 10.2.9–10). Let R be commutative.

- (a) Prove that $\operatorname{Hom}_R(R, M) \cong M$ as R-modules. [Hint: Show that each element of $\operatorname{Hom}_R(R, M)$ is determined by its value on $1 \in R$.]
- (b) Prove that $\operatorname{End}_R(R) \cong R$ as rings.

Problem 8. Let $\phi: M \to M$ be an *R*-module homomorphism such that $\phi \circ \phi = \phi$. Show that

$$M = \ker \phi \oplus \operatorname{img} \phi.$$

Problem 9 (DF 10.3.7). Let N be a submodule of M. Prove that if both M/N and N are finitely generated, then so is M.

Date: 28 January 2008; due Friday, 15 February 2008.