MATH 110: LINEAR ALGEBRA MIDTERM \#2 REVIEW

Problem 1. Mark the following statements true or false. If the statement is true, give a reason; if it is false, give a counterexample.
(a) If A, B are row-equivalent matrices, then $\operatorname{det}(A)=\operatorname{det}(B)$.
(b) Let A, B be $n \times n$ matrices such that $A B=O$. Then $\operatorname{rk}(A)+\operatorname{rk}(B) \leq n$.
(c) The row space of a matrix A is equal to the column space of A.
(d) If A is a matrix which is similar only to itself, then $A=I$.
(e) Let A be an $m \times n$ matrix with rank m. Then there exists an $n \times m$ matrix B such that $B A=I$, where I is the $m \times m$ identity matrix.
(f) $\operatorname{det}\left(A+A^{t}\right)=2 \operatorname{det}(A)$ for any matrix A.
(g) If $a \neq b$, then the $n \times n$-matrix

$$
A=\left(\begin{array}{cccccc}
a+b & a b & 0 & \ldots & 0 & 0 \\
1 & a+b & a b & \ldots & 0 & 0 \\
0 & 1 & a+b & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & a+b & a b \\
0 & 0 & 0 & \ldots & 1 & a+b
\end{array}\right)
$$

has

$$
\operatorname{det} A=\frac{a^{n+1}-b^{n+1}}{a-b}
$$

(h) If A, B, C, D are $n \times n$-matrices, then the $2 n \times 2 n$-matrix

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

has determinant

$$
\operatorname{det} M=(\operatorname{det} A)(\operatorname{det} D)-\operatorname{det}(B) \operatorname{det}(C) .
$$

(i) Similar matrices have the same characteristic polynomial.
(j) The matrices A and A^{t} have the same eigenvalues.
(k) If two matrices have the same characteristic polynomial and one is diagonalizable, then so is the other.
(1) A matrix A satisfies $A^{2}=I$ if and only if the only eigenvalues of A are ± 1.
(m) If $A \neq O$ is a matrix such that $A^{k}=O$ for some $k \geq 1$, then A is not diagonalizable.
(n) If A is an $n \times n$-matrix and $f(t)$ is a polynomial such that $f(A)=O$, then the characteristic polynomial of A divides $f(t)$.
(o) If A is a matrix with eigenvalue λ and $f(t)$ is a polynomial, then $f(\lambda)$ is an eigenvalue of $f(A)$.

