## MATH 110: LINEAR ALGEBRA MIDTERM \#1 REVIEW

Problem 1. Let $V=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$.
(a) $\mathbb{R}$ is a vector space over the rational numbers $\mathbb{Q}$. Prove that $V$ is a subspace of $\mathbb{R}$ (over $\mathbb{Q})$.
(b) Show that $\beta=\{1, \sqrt{2}\}$ is a basis for $V$.
(c) Prove that the map $T: V \rightarrow V$ by $x \mapsto x \sqrt{2}$ is a linear transformation.
(d) Compute $[T]_{\beta}$.
(e) Prove that $T$ is an isomorphism.

Problem 2. Let $V$ be a finite-dimensional vector space, and let $W$ be a subspace of $V$. Show that there exists a subspace $Z \subset V$ such that $V=W \oplus Z$.

Problem 3. Let $V$ and $W$ be finite-dimensional vector spaces over a field $F$, and let

$$
V \times W=\{(v, w): v \in V, w \in W\}
$$

Then $V \times W$ is a vector space over $F$, by

$$
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right) \text { and } c(v, w)=(c v, c w)
$$

for $v_{1}, v_{2} \in V, w_{1}, w_{2} \in W$, and $c \in F$.
(a) What is the dimension of $V \times W$ ?
(b) Prove or disprove: $V \times W$ is isomorphic to $\mathcal{L}(V, W)$.

Problem 4. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear transformation defined by $f(x) \mapsto f^{\prime}(x)$. Let $\beta$ be the ordered basis $1, x, x^{2}$ of $P_{2}(\mathbb{R})$, and let $\beta^{\prime}$ be the ordered basis $1,1+x, 1+x+x^{2}$. Find a matrix $Q$ such that

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q .
$$

Problem 5. Let $v_{1}=(2,1)$ and $v_{2}=(1,-1)$. Then $\beta=v_{1}, v_{2}$ is an ordered basis for $V=\mathbb{R}^{2}$. (a) Prove that there exist linear functionals $f_{1}, f_{2}: V \rightarrow \mathbb{R}$ satisfying:

$$
f_{1}\left(v_{1}\right)=1, f_{1}\left(v_{2}\right)=0 ; \quad f_{2}\left(v_{1}\right)=0, f_{2}\left(v_{2}\right)=1 .
$$

(b) Find a formula for $f_{1}(x, y)$.
(c) Prove that $\left\{f_{1}, f_{2}\right\}$ is a basis for $V^{*}$.

