MATH 110: LINEAR ALGEBRA HOMEWORK \#4 WORKSHEET

JOHN VOIGHT

Work on exercise assigned to your group (by number) at the board, and then write up together a nice solution that everyone can understand. If you finish early, return to your desks and work together on another problem of your choice.
(1) $[2.2 .10]$ Let V be a vector space (over a field F). Let W_{1}, W_{2} be subspaces such that $V=W_{1} \oplus W_{2}$. Let $T: V \rightarrow V$ be a linear transformation such that $T\left(W_{1}\right) \subset W_{1}$ and $T\left(W_{2}\right) \subset W_{2}$. Prove that there is an ordered basis β of V such that $[T]_{\beta}$ has the form

$$
\left(\begin{array}{cc}
A_{1} & O \\
O & A_{2}
\end{array}\right)
$$

where A_{1} and A_{2} are matrices. What are the dimensions of the matrices A_{1} and A_{2} ? Prove that $T\left(W_{1}\right)=W_{1}$ if and only if A_{1} is an invertible matrix.
(2) [2.2.14] Let $V=P(\mathbb{R})$, and for $j \geq 1$ define $T_{j}: V \rightarrow V$ by $T_{j}(f(x))=f^{(j)}(x)$, where $f^{(j)}(x)$ is the j th derivative of $f(x)$. Prove that the set $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ is a linearly independent subset of $\mathcal{L}(V)$ for any positive integer n.
(3) [2.3.11] Let V be a vector space, and let $T: V \rightarrow V$ be linear. Prove that $T^{2}=T_{0}$ (the zero transformation) if and only if $R(T) \subset N(T)$. Prove that if one of these two equivalent conditions holds, and V is finite-dimensional, then there is an ordered basis β for V such that $[T]_{\beta}$ has the form

$$
\left(\begin{array}{ll}
O & A \\
O & O
\end{array}\right)
$$

for some matrix A.
(4) $[2.3 .18(\mathrm{a})]$ Let V be a finite-dimensional vector space, and let $T: V \rightarrow V$ be linear. If $\operatorname{rk}(T)=\operatorname{rk}\left(T^{2}\right)$, then prove that $R(T) \cap N(T)=\{0\}$. Deduce that $V=R(T) \oplus N(T)$.
(5) [2.4.15] Let V and W be finite-dimensional vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W.
(6) "Label" true or false:
(a) Any two vector spaces of the same (finite) dimension are isomorphic.
(b) The set of $n \times n$ invertible matrices is a subspace of $M_{n \times n}(F)$.
(c) If A is a matrix, then $A^{2}=A$ implies $A=I$ or $A=O$ (the identity and zero matrix, respectively).
(d) If $T: V \rightarrow W$ is an invertible linear transformation, and β is a basis for V, γ a basis for W, then $\left([T]_{\beta}^{\gamma}\right)^{-1}=\left[T^{-1}\right]_{\beta}^{\gamma}$.
(7) Let B be an $n \times n$ matrix. Prove that the map $T_{B}: M_{n \times n}(F) \rightarrow M_{n \times n}(F)$ by $A \mapsto A B$ is an isomorphism if and only if B is invertible.

