MATH 110: LINEAR ALGEBRA HOMEWORK #4 WORKSHEET

JOHN VOIGHT

Work on exercise assigned to your group (by number) at the board, and then write up together a nice solution that everyone can understand. If you finish early, return to your desks and work together on another problem of your choice.

(1) [2.2.10] Let V be a vector space (over a field F). Let W_1, W_2 be subspaces such that $V = W_1 \oplus W_2$. Let $T: V \to V$ be a linear transformation such that $T(W_1) \subset W_1$ and $T(W_2) \subset W_2$. Prove that there is an ordered basis β of V such that $[T]_{\beta}$ has the form

$$\begin{pmatrix} A_1 & O \\ O & A_2 \end{pmatrix},$$

where A_1 and A_2 are matrices. What are the dimensions of the matrices A_1 and A_2 ? Prove that $T(W_1) = W_1$ if and only if A_1 is an invertible matrix.

- (2) [2.2.14] Let $V = P(\mathbb{R})$, and for $j \ge 1$ define $T_j : V \to V$ by $T_j(f(x)) = f^{(j)}(x)$, where $f^{(j)}(x)$ is the *j*th derivative of f(x). Prove that the set $\{T_1, T_2, \ldots, T_n\}$ is a linearly independent subset of $\mathcal{L}(V)$ for any positive integer *n*.
- (3) [2.3.11] Let V be a vector space, and let $T: V \to V$ be linear. Prove that $T^2 = T_0$ (the zero transformation) if and only if $R(T) \subset N(T)$. Prove that if one of these two equivalent conditions holds, and V is finite-dimensional, then there is an ordered basis β for V such that $[T]_{\beta}$ has the form

$$\begin{pmatrix} O & A \\ O & O \end{pmatrix}$$

for some matrix A.

- (4) [2.3.18(a)] Let V be a finite-dimensional vector space, and let $T: V \to V$ be linear. If $\operatorname{rk}(T) = \operatorname{rk}(T^2)$, then prove that $R(T) \cap N(T) = \{0\}$. Deduce that $V = R(T) \oplus N(T)$.
- (5) [2.4.15] Let V and W be finite-dimensional vector spaces, and let $T : V \to W$ be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W.
- (6) "Label" true or false:
 - (a) Any two vector spaces of the same (finite) dimension are isomorphic.
 - (b) The set of $n \times n$ invertible matrices is a subspace of $M_{n \times n}(F)$.
 - (c) If A is a matrix, then $A^2 = A$ implies A = I or A = O (the identity and zero matrix, respectively).
 - (d) If $T: V \to W$ is an invertible linear transformation, and β is a basis for V, γ a basis for W, then $([T]^{\gamma}_{\beta})^{-1} = [T^{-1}]^{\gamma}_{\beta}$.
- (7) Let B be an $n \times n$ matrix. Prove that the map $T_B : M_{n \times n}(F) \to M_{n \times n}(F)$ by $A \mapsto AB$ is an isomorphism if and only if B is invertible.

Date: February 9, 2004.