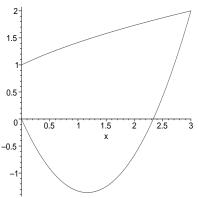
QUIZ #14: CALCULUS 1A (Stankova) Wednesday, May 5, 2004 Section 10:00–11:00 (Voight)

Name:

Please complete the following problem(s) in the space provided. You may *not* use a calculator. You will have 15 minutes to complete the quiz.

Please include all relevant intermediate calculations and explain your work when appropriate.

Problem 1. Find the area of the region bounded by the curves $y = \sqrt{x+1}$ and $y = x^2 - 7x/3$ between x = 0 and x = 3.



SOLUTION. The area is given by the integral

$$\int_0^3 \left(\sqrt{x+1} - (x^2 - 7x/3)\right) dx = \int_0^3 \left((x+1)^{1/2} - x^2 + 7x/3\right) dx$$
$$= \left(\frac{2}{3}(x+1)^{3/2} - \frac{x^3}{3} + \frac{7x^2}{6}\right)_0^3$$
$$= \frac{2}{3}4^{3/2} - 9 + \frac{63}{6} - \frac{2}{3} = \frac{16}{3} - 9 + \frac{21}{2} = \frac{37}{6}$$

QUIZ #14: CALCULUS 1A (Stankova) Wednesday, May 5, 2004 Section 11:00–12:00 (Voight)

Problem 1. Evaluate the indefinite integral

$$\int 5x\sqrt{x^2-1}\,dx.$$

SOLUTION. Let $u = x^2 - 1$. Then du = 2x dx, so

$$\int 5x\sqrt{x^2 - 1} \, dx = \frac{5}{2} \int (2x)\sqrt{x^2 - 1} \, dx = \frac{5}{2} \int \sqrt{u} \, du$$
$$= \frac{5}{2} \cdot \frac{2}{3}u^{3/2} + C = \frac{5}{3}(x^2 - 1)^{3/2} + C.$$

Problem 2. Evaluate the definite integral.

$$\int_0^1 \left(\frac{1}{2\sqrt{x}}\right) e^{\sqrt{x}} \, dx.$$

SOLUTION. Let $u = \sqrt{x}$. Then $du = (1/2\sqrt{x}) dx$. For x = 1, 4 we have u = 1, 2, so

$$\int_{1}^{4} \left(\frac{1}{2\sqrt{x}}\right) e^{\sqrt{x}} dx = \int_{1}^{2} e^{u} du = e^{u}|_{1}^{2} = e^{2} - e.$$