QUIZ \#13: CALCULUS 1A (Stankova)

Wednesday, April 28, 2004
Section 10:00-11:00 (Voight)

Problem 1. Let $g(x)=\int_{-2}^{x} f(t) d t$, where f is the function shown.

(a) Evaluate $g(-2)$.
(b) Is $g(4)>0$? Explain.
(c) Estimate $g(0)$.
(d) Where does g have a maximum value in the interval $[-2,4]$?
(e) Draw a (very) rough graph of g.

Solution. For (a), we have $g(-2)=0$ (an integral with endpoints equal is zero). For (b), yes, $g(4)>0$ because the total area above the axis is greater than that below. For (c), we estimate using right endpoints and the intervals $[-2,-1]$ and $[-1,0]$ (with $\Delta x=1$), which has $f(-1)=3$ and $f(0)=1$ so

$$
g(0) \approx \sum_{i=1}^{2} f\left(x_{i}\right) \Delta x=(3+1)(1)=4 .
$$

For (d), g has a maximum value at $x=4$, since this is where the total area will be maximal. The plot of g looks like:

QUIZ \#13: CALCULUS 1A (Stankova)

Wednesday, April 28, 2004
Section 11:00-12:00 (Voight)

Problem 1. Use the Fundamental Theorem of Calculus (Part 1) to find the derivative of the function

$$
y=\int_{1}^{x^{2}}(\sqrt{t}+\ln t) d t
$$

Solution. If

$$
y=\int_{1}^{h(x)} f(t) d t
$$

then

$$
y^{\prime}=f(h(x)) h^{\prime}(x) .
$$

So since $f(t)=\sqrt{t}+\ln t$ and $h(x)=x^{2}$, we have

$$
y^{\prime}=\left(\sqrt{x^{2}}+\ln \left(x^{2}\right)\right)(2 x)=2 x|x|+4 x \ln x .
$$

Problem 2. Use the Fundamental Theorem of Calculus (Part 2) to evaluate the integral.

$$
\int_{1}^{2} \frac{6+\sqrt{u}}{u^{2}} d u .
$$

Solution. The antiderivative of

$$
f(u)=\frac{6+\sqrt{u}}{u^{2}}=6 u^{-2}+u^{-3 / 2}
$$

is

$$
F(u)=-6 u^{-1}-2 u^{-1 / 2}=-\frac{6}{u}-2 \frac{1}{\sqrt{u}} .
$$

By the FTC we have

$$
\int_{1}^{2} \frac{6+\sqrt{u}}{u^{2}} d u=F(2)-F(1)=-3-\frac{2}{\sqrt{2}}-(-6-2)=5-\sqrt{2} .
$$

