QUIZ \#10: CALCULUS 1A (Stankova)

Wednesday, April 7, 2004
Section 10:00-11:00 (Voight)

Problem 1. Find two positive numbers whose product is 4 and for which the sum of their squares is a minimum.

Solution. Let x, y be the numbers. Then $x y=4$, so $y=4 / x$ And the sum of their squares is

$$
S(x)=x^{2}+y^{2}=x^{2}+\left(\frac{4}{x}\right)^{2}=x^{2}+\frac{16}{x^{2}} ;
$$

we want this to be a maximum, so we find

$$
S^{\prime}(x)=2 x-\frac{32}{x^{3}}=0
$$

or $2 x^{4}-32=2\left(x^{4}-16\right)=2\left(x^{2}-4\right)\left(x^{2}+4\right)=2(x-2)(x+2)\left(x^{2}+4\right)=0$, so $x=2$. Therefore $y=2$ as well.

Finally, we verify that this is a local minimum:

$$
S^{\prime \prime}(x)=2+\frac{96}{x^{4}}>0 .
$$

QUIZ \#10: CALCULUS 1A (Stankova)

Wednesday, April 7, 2004
Section 11:00-12:00 (Voight)

Problem 1. Consider the cost function

$$
C(x)=16+x^{3} .
$$

given in millions of dollars.
(a) At what production level x is the average cost minimal?
(b) Let

$$
p(x)=36-3 x-x^{2}
$$

be the demand function. At what production level x is the profit maximal? What is the maximum profit?

Solution. For (a), the average cost is

$$
\frac{C(x)}{x}=\frac{16}{x}+x^{2}
$$

so to minimize we compute the derivative

$$
\left(\frac{C(x)}{x}\right)^{\prime}=\frac{-16}{x^{2}}+2 x=0
$$

so $x^{3}=8$, or $x=2$. This is indeed a minimum, as we compute that

$$
\left(\frac{C(x)}{x}\right)^{\prime \prime}=\frac{32}{x^{3}}+2>0 .
$$

For (b), the profit is the revenue minus cost, i.e.
$P(x)=x p(x)-C(x)=36 x-3 x^{2}-x^{3}-\left(16+x^{3}\right)=-16+36 x-3 x^{2}-2 x^{3}$
so the profit is maximized when

$$
P^{\prime}(x)=36-6 x-6 x^{2}=-6\left(x^{2}+x-6\right)=-6(x-2)(x+3)=0
$$

i.e. $x=2$. This is indeed a local maximum, since

$$
P^{\prime \prime}(x)=-6-12 x<0
$$

The maximum profit is

$$
P(x)=-16+72-12-16=28
$$

million dollars.

