QUIZ #9: CALCULUS 1A (Stankova)
Wednesday, March 31, 2004
Section 10:00-11:00 (Voight)

Problem 1. Find the limit. Use [’Hopital’s Rule where appropriate.
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SOLUTION. We have:
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Problem 2. Find the limit. Use [’Hopital’s Rule where appropriate.
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SOLUTION. We have:
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QUIZ #9: CALCULUS 1A (Stankova)
Wednesday, March 31, 2004
Section 11:00-12:00 (Voight)

Problem 1. Skeich the curve. Find an equation of the slant asymptote.
B 202 —x —1

y= r+1

SOLUTION. We first compute the slant asymptote: it has slope m = 2,
the ratio of the leading coefficients. We compute the intercept:
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Therefore the slant asymptote has equation y = 2z — 3.
There is a potential vertical asymptote at x = —1, and in fact,
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Next, we find critical points:

() —1)— (222 —2—1) 42?+3z—-1-222+x+1
B (x+1)? N (z+1)2
22+ 4z 2z(x+2)

o (z+ 1?2 (z+1)2

So the critical points are = 0 and = = 2. (z = —1 is not a critical point,
since it is not in the domain of the original function.)

To see if these are local minima or maxima, we can use the First Deriv-
ative Test, but it also works to use the Second Derivative Test:

g (z+1)%(de +4) — (222 + 42)2(z + 1)

(z+1)4
(D) ((z+1)(4x + 4) — 2(227 + 42))
(x+1)4
4x% +8x + 4 — 42 — 8z 4
- (z +1)3 CEE
We see that at z = 0, ¢y’ > 0 so it is a local minimum, and at x = —2,

y” < 0 is a local maximum. (You can also compute concavity.)
This gives the following graph:
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