QUIZ \#7: CALCULUS 1A (Stankova)
 Wednesday, March 10, 2004
 Section 10:00-11:00 (Voight)

Problem 1. Evaluate

$$
\lim _{x \rightarrow e} \frac{e^{\ln x}-e}{x-e}
$$

Explain your work.
Solution. We match to the template

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

We take $f(x)=e^{\ln x}$ and $a=e$, and verify that $f(a)=e^{\ln e}=e$ indeed. Therefore the limit is equal to $f^{\prime}(e)$. We compute

$$
f^{\prime}(x)=\frac{1}{x} e^{\ln x}
$$

so $f^{\prime}(e)=e / e=1$, which is equal to the limit.
Or, you can simply note that $e^{\ln x}=x$, so we just have

$$
\lim _{x \rightarrow e} \frac{x-e}{x-e}=1
$$

Problem 2. Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin \left((3+x)^{2}\right)-\sin 9}{x}
$$

Explain your work.
Solution. We again match to the template, and let $f(x)=\sin \left((3+x)^{2}\right)$ and $a=0$. We verify that $f(0)=\sin 9$, so the limit is equal to $f^{\prime}(0)$. We compute by the chain rule:

$$
f^{\prime}(x)=\cos \left((3+x)^{2}\right)\left((3+x)^{2}\right)^{\prime}=\cos \left((3+x)^{2}\right)(2(3+x))
$$

and so $f^{\prime}(0)=6 \cos 9$, the value of the limit.

QUIZ \#7: CALCULUS 1A (Stankova)
 Wednesday, March 10, 2004
 Section 11:00-12:00 (Voight)

Problem 1. Sketch the graph of f by hand and use your sketch to find the absolute (global) and local maximum and minimum values of f.

$$
f(x)= \begin{cases}2 x^{2}-1, & \text { if }-1 \leq x<0 \\ 1-(x-1)^{2}, & \text { if } 0 \leq x \leq 2\end{cases}
$$

Solution. We have the graph:

Looking at the graph, we see that f has an absolute maximum at $x=-1$ and $x=1$. It has no local or absolute minimum, because if it did it would be at $x=0$ but f jumps at that point. It has a local maximum at $x=1$.

