QUIZ \#5: CALCULUS 1A (Stankova)

Wednesday, February 25, 2004
Section 10:00-11:00 (Voight)

Problem 1. Use logarithmic differentiation to find the derivative of the function

$$
y=x^{\ln x}
$$

Solution. Taking ln of both sides, we obtain

$$
\ln y=\ln \left(x^{\ln x}\right)=\ln (x) \ln (x)=\ln (x)^{2}
$$

Differentiating now with respect to x, we have (implicit differentiation)

$$
\frac{d}{d x}(\ln y)=\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}(\ln x)^{2}
$$

To differentiate the right-side, we apply the chain rule:

$$
\frac{d}{d x}(\ln x)^{2}=2 \ln x \frac{d}{d x}(\ln x)=\frac{2 \ln x}{x}
$$

Therefore we get

$$
\frac{1}{y} \frac{d y}{d x}=\frac{2 \ln x}{x}
$$

so

$$
\frac{d y}{d x}=y \frac{2 \ln x}{x}=x^{\ln x} \frac{2 \ln x}{x}
$$

QUIZ \#5: CALCULUS 1A (Stankova)

Wednesday, February 25, 2004
Section 11:00-12:00 (Voight)

Problem 1. Differentiate the function

$$
f(x)=\sin (\ln (2 x)) .
$$

Solution. We use the chain rule:

$$
f^{\prime}(x)=\cos (\ln (2 x))(\ln 2 x)^{\prime}=\cos (\ln (2 x)) \frac{2}{2 x}=\frac{\cos (\ln (2 x))}{x}
$$

Problem 2. Differentiate the function

$$
h(x)=\ln \left(x+\sqrt{x^{2}-1}\right) .
$$

Solution. We find the derivative again using the chain rule

$$
h^{\prime}(x)=\left(\ln \left(x+\sqrt{x^{2}-1}\right)\right)^{\prime}=\frac{1}{x+\sqrt{x^{2}-1}}\left(x+\sqrt{x^{2}-1}\right)^{\prime} .
$$

The second part is

$$
\begin{aligned}
\left(x+\sqrt{x^{2}-1}\right)^{\prime} & =\left(x+\left(x^{2}-1\right)^{1 / 2}\right)^{\prime}=1+\frac{1}{2}\left(x^{2}-1\right)^{-1 / 2}(2 x) \\
& =1+\frac{x}{\sqrt{x^{2}-1}}=\frac{x+\sqrt{x^{2}-1}}{\sqrt{x^{2}-1}} .
\end{aligned}
$$

Altogether, this gives the derivative

$$
h^{\prime}(x)=\frac{1}{x+\sqrt{x^{2}-1}} \cdot \frac{x+\sqrt{x^{2}-1}}{\sqrt{x^{2}-1}}=\frac{1}{\sqrt{x^{2}-1}} .
$$

