QUIZ \#4: CALCULUS 1A (Stankova)

Wednesday, February 18, 2004
Section 10:00-11:00 (Voight)

Problem 1. Find the derivative of the function

$$
F(x)=\frac{x^{2}+6 \sqrt{x}+5}{\sqrt{x}}
$$

in two ways: by using the Quotient Rule and by simplifying first. Show that your answers are equivalent.

Solution. By the Quotient Rule, we have

$$
\begin{aligned}
F^{\prime}(x) & =\frac{h o d h i-h i d h o}{h o^{2}} \\
& =\frac{\sqrt{x}\left(2 x+\frac{3}{\sqrt{x}}\right)-\left(x^{2}+6 \sqrt{x}+5\right)\left(\frac{1}{2 \sqrt{x}}\right)}{x} \\
& =\frac{1}{x}\left(2 x \sqrt{x}+3-\frac{1}{2} x \sqrt{x}-3-\frac{5}{2 \sqrt{x}}\right) \\
& =\frac{1}{x}\left(\frac{3}{2} x \sqrt{x}-\frac{5}{2 \sqrt{x}}\right)=\frac{3}{2 \sqrt{x}}-\frac{5}{2 x \sqrt{x}} .
\end{aligned}
$$

Simplifying, we have

$$
F(x)=x^{3 / 2}+6+5 x^{-1 / 2}
$$

so by the Power Rule,

$$
F^{\prime}(x)=\frac{3}{2} x^{1 / 2}-\frac{5}{2} x^{-3 / 2}
$$

These are the same, since $x^{1 / 2}=\sqrt{x}$ and $x^{-3 / 2}=\frac{1}{x \sqrt{x}}$.

QUIZ \#4: CALCULUS 1A (Stankova)

Wednesday, February 18, 2004
Section 11:00-12:00 (Voight)

Problem 1. Find the derivative of the function

$$
f(x)=\frac{2}{x^{2}-x}
$$

using the definition of the derivative. State the domain of the function and the domain of the derivative.

You may not use only differentiation laws!
Solution. By definition,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{(x+h)^{2}-(x+h)}-\frac{2}{x^{2}-x}}{h} .
\end{aligned}
$$

No need to simplify the denominators! We look for the common denominator (the product of both) and combine; the first factor is missing an $x^{2}-x$ and the second is missing a $(x+h)^{2}-(x+h)$, so we get

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2\left(x^{2}-x\right)-2\left((x+h)^{2}-(x+h)\right)}{h\left(x^{2}-x\right)\left((x+h)^{2}-(x+h)\right)} .
$$

Remember, the h enters the denominator since we are dividing by it. Now we multiply out the numerator and hope to cancel the h in the denominator. The numerator is
$\left(2 x^{2}-2 x\right)-2\left(x^{2}+2 x h+h^{2}-x-h\right)=-4 x h-2 h^{2}+2 h=h(-4 x-2 h+2)$,
so cancelling the h, we get

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-4 x-2 h+2}{h\left(x^{2}-x\right)\left((x+h)^{2}-(x+h)\right)}=\frac{-4 x+2}{\left(x^{2}-x\right)\left(x^{2}-x\right)} .
$$

The domain of the function is wherever the denominator does not vanish, $x^{2}-x \neq 0$, i.e. $x \neq 0,1$. The same is true of the derivative: its domain is $x \neq 0,1$.

Check your work using the quotient rule:

$$
f^{\prime}(x)=\frac{\left(x^{2}-x\right)(0)-2(2 x-1)}{\left(x^{2}-x\right)^{2}}=\frac{-4 x+2}{\left(x^{2}-x\right)^{2}} .
$$

Yup!

The algebra is also not so bad if you use the alternative definition:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\frac{2}{x^{2}-x}-\frac{2}{a^{2}-a}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{2\left(a^{2}-a\right)-2\left(x^{2}-x\right)}{(x-a)\left(x^{2}-x\right)\left(a^{2}-a\right)} \\
& =\lim _{x \rightarrow a} \frac{2 a^{2}-2 x^{2}+2 x-2 a}{(x-a)\left(x^{2}-x\right)\left(a^{2}-a\right)} \\
& =\lim _{x \rightarrow a} \frac{2(a-x)(a+x)+2(x-a)}{(x-a)\left(x^{2}-x\right)\left(a^{2}-a\right)} \\
& =\lim _{x \rightarrow a} \frac{-2(x+a)+2}{\left(x^{2}-x\right)\left(a^{2}-a\right)}=\frac{-4 a+2}{\left(a^{2}-a\right)^{2}} .
\end{aligned}
$$

