QUIZ \#3: CALCULUS 1A (Stankova)

Wednesday, February 11, 2004
Section 10:00-11:00 (Voight)

Problem 1.

(a) Find the slope of the tangent to the parabola $y=1-3 x+x^{2}$ at the point where $x=a$.
(b) Find the slope of the tangent lines at the points whose x-coordinates are (i) 0 and (ii)1.

Solution. By definition, we have

$$
\begin{aligned}
m & =f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{\left(1-3 x+x^{2}\right)-\left(1-3 a+a^{2}\right)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x^{2}-a^{2}-3(x-a)}{x-a}=\lim _{x \rightarrow a} \frac{(x-a)(x+a-3)}{x-a} \\
& =\lim _{x \rightarrow a}(x+a-3)=2 a-3 .
\end{aligned}
$$

[Using the definition

$$
f^{\prime}(a)=\lim _{h \rightarrow a} \frac{f(a+h)-f(a)}{h}
$$

also is correct and will give the correct answer.]
For part (b), we substitute: $f^{\prime}(0)=2(0)-3=-3$ and $f^{\prime}(1)=2(1)-3=$ -1 .

QUIZ \#3: CALCULUS 1A (Stankova)

Wednesday, February 11, 2004
Section 11:00-12:00 (Voight)

Problem 1. Prove that the equation

$$
x^{4}-3 x^{2}=13
$$

has at least one real root. Please verify in writing all hypotheses and conditions of any theorem you apply and explain your work.

Solution. We choose $f(x)=x^{4}-3 x^{2}-13$, and seek a c such that $f(c)=N=0$.

Cooking up a and b, we see that $f(0)=-13<0$, so we take $a=0$, and $f(3)=3^{4}-3^{3}-13=41>0$, so we take $b=3$.

The function f is continuous on $[0,3]$ (actually, on $(-\infty, \infty)$) because it is a polynomial. Therefore, by the Intermediate Value theorem, since

$$
f(0)=-13<0<41=f(3)
$$

there exists a c in $(0,3)$ such that $f(c)=0$, i.e. $c^{4}-3 c^{2}=13$ as desired.

