QUIZ \#2: CALCULUS 1A (Stankova)

Wednesday, February 4, 2004
Section 10:00-11:00 (Voight)

Problem 1. Evaluate the limit, if it exists:

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h}
$$

Solution. Applying limit laws, we get the indeterminate expression 0/0. Thus we try to simplify and factor:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{3+h}-\frac{1}{3}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{3-(3+h)}{3(3+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{-h}{3 h(3+h)}=\lim _{h \rightarrow 0} \frac{-1}{3(3+h)} \stackrel{L L}{=}-1 / 9
\end{aligned}
$$

QUIZ \#2: CALCULUS 1A (Stankova)

Wednesday, February 4, 2004
Section 11:00-12:00 (Voight)

Problem 1. Use the given graph of f to find a number δ such that

$$
|f(x)-3|<0.3 \quad \text { whenever } \quad 0<|x-4|<\delta .
$$

Solution. Reading directly from the graph, we see that x can deviate to the left by $4-2.89=1.11$ and to the right by $5.29-4=1.29$. We can only deviate to the left or right by the smaller of these values, so we may take $\delta=1.11$.

Problem 2. Prove the statement using the ϵ, δ definition of limit. Illustrate with a graph.

$$
\lim _{x \rightarrow a} c=c .
$$

[Hint: There may be more than one correct answer. Justify your reasoning.]
Solution. We claim that $\lim _{x \rightarrow a} c=c$. Let $\epsilon>0$ be given. Then we need to show that $|f(x)-L|<\epsilon$ whenever $|x-a|<\delta$. But the first inequality is just $|c-c|=0<\epsilon$, which is always true. Therefore we may choose δ to be any real number.
[If the space aliens came, we would tell them that their inequality is always satisfied, and give them any value of δ no matter what value of ϵ they gave us. Suckers!]

