QUIZ \#1: CALCULUS 1A (Stankova)

Wednesday, January 28, 2004
Section 10:00-11:00 (Voight)
Name:

Please complete the following problem in the space provided. You may not use a calculator. You will have 15 minutes to complete the quiz.

Please include all relevant intermediate calculations and explain your work when appropriate.

Problem 1. The position of a hydrogen fuel-cell vehicle is given by the values in the following table:

> | t (seconds) | 0 | 5 | 10 | 15 | 20 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s (feet) | 30 | 150 | 450 | 950 | 1600 | 2575 |

(a) Find the average velocity for the time period beginning when $t=5$ and lasting:
(i) 15 seconds
(ii) 10 seconds
(iii) 5 seconds
(b) Use the graph of s as a function of to estimate the instantaneous velocity when $t=5$.

QUIZ \#1: CALCULUS 1A (Stankova)

Wednesday, January 28, 2004
Section 11:00-12:00 (Voight)
Name:

Please complete the following problem in the space provided. You may not use a calculator. You will have 15 minutes to complete the quiz.

Please include all relevant intermediate calculations and explain your work when appropriate.

Problem 1. If a pellet is shot upward by the Mars rover, its height in kilometers after t seconds is given by $h=3 t-t^{2}$.
(a) Find the average velocity over the given time intervals:
(i) $[0,1]$
(ii) $[0,0.5]$
(iii) $[0,0.1]$
(b) Graph the height of the pellet as a function of time; draw the tangent line to the graph at time $t=0$.
(c) Find the initial velocity at which the pellet was shot.

