MATH 1A: CALCULUS HOMEWORK \#13

JOHN VOIGHT

§5.3: The Fundamental Theorem of Calculus

Problem 4. For (a), we note that $g(-3)=0$ (the integral is empty) and $g(3)=0$ as well (the areas above and below the axis are equal).

For (b), we estimate that

$$
g(-2)=\int_{-3}^{-2} f(t) d t
$$

is about the area of a triangle with base 1 and height 2 , so $g(-2) \approx 1$. For $g(-1)$ we add approximately $2 \frac{1}{2}$ (counting boxes) so $g(-1)=1+2 \frac{1}{2} \approx 3 \frac{1}{2}$. For $g(0)$ we add finally a triangle which has area $3 / 2$, so $g(0)=3 \frac{1}{2}+1 \frac{1}{2} \approx 6$.

For (c), we note that g is increasing as long as we are adding more area, i.e. when the function f is positive. Therefore g is increasing on the interval $(-3,0)$ and is decreasing on $(0,3)$.

For (d), we note that g has a maximum value at $x=0$ by (c) and the first derivative test.
For (e), we have the following graph, using parts (a)-(d):

For (f), note that the graph of g^{\prime} and the graph of f are the same by FTC.
Problem 8. Let $f(t)=\ln t$ so $g(x)=\int_{1}^{x} f(t) d t$. Then by FTC we have $g^{\prime}(x)=f(x)=\ln x$.
Problem 10. Let $f(x)=1 /\left(x+x^{2}\right)$ so $g(u)=\int_{3}^{u} f(x) d x$. Then by FTC we have $g^{\prime}(u)=f(u)=1 /\left(u+u^{2}\right)$.
Problem 16. Let $f(t)=(t+\sin t)$ and $h(x)=\cos x$. Then by FTC we have

$$
y^{\prime}=f(h(x)) h^{\prime}(x)=(\cos x+\sin (\cos x))(-\sin x)=-\sin x(\cos x+\sin (\cos x)) .
$$

Problem 22.

$$
\int_{0}^{4}\left(1+3 y-y^{2}\right) d y=\left(y+3 \frac{y^{2}}{2}-\frac{y^{3}}{3}\right)_{0}^{4}=4+3 \cdot 8-\frac{64}{3}-0=\frac{20}{3} .
$$

Date: April 27, 2004.
$\S 5.3: 4,8,10,16,22,26,30,32,40,42,50,52,62,66 ; \S 5.4: 2,4,22,28,38,40,44,48,54,56,58$.

Problem 26. The integral does not exist because the function $f(x)=x^{-5}$ has a vertical asymptote at $x=0$ and hence is discontinuous on the interval $[-2,3]$.

Problem 30.

$$
\int_{1}^{4} x^{-1 / 2} d x=\left.2 x^{1 / 2}\right|_{1} ^{4}=2(2-1)=2
$$

Problem 32.

$$
\int_{0}^{1}\left(3+x^{3 / 2}\right) d x=\left(3 x+\frac{2}{5} x^{5 / 2}\right)_{0}^{1}=3+\frac{2}{5}-0=\frac{17}{5}
$$

Problem 40.

$$
\int_{1}^{2}\left(4 u^{-3}+u^{-1}\right) d u=\left(\frac{4}{-2} u^{-2}+\ln |u|\right)_{1}^{2}=\left(-\frac{2}{u^{2}}+\ln u\right)_{1}^{2}=-\frac{1}{2}+\ln 2+2-0=\frac{3}{2}+\ln 2 .
$$

Problem 42.

$$
\int_{-\pi}^{\pi} f(x) d x=\int_{-\pi}^{0} x d x+\int_{0}^{\pi} \sin x d x=\left.\frac{x^{2}}{2}\right|_{-\pi} ^{0}-\left.\cos x\right|_{0} ^{\pi}=0-\frac{\pi^{2}}{2}-(\cos \pi-\cos 0)=-\frac{\pi^{2}}{2}+2
$$

Problem 50. Let $h_{1}(x)=\tan x$ and $h_{2}(x)=x^{2}, f(t)=1 / \sqrt{2+t^{4}}$. Then by the FTC,

$$
g^{\prime}(x)=f\left(h_{2}(x)\right) h_{2}^{\prime}(x)-f\left(h_{1}(x)\right) h_{1}^{\prime}(x)=\frac{1}{\sqrt{2+x^{8}}}(2 x)-\frac{1}{\sqrt{2+\tan ^{4} x}}\left(\sec ^{2} x\right)=\frac{2 x}{\sqrt{2+x^{8}}}-\frac{\sec ^{2} x}{\sqrt{2+\tan ^{4} x}}
$$

Problem 52. Let $h_{1}(x)=\cos x$ and $h_{2}(x)=5 x, f(u)=\cos \left(u^{2}\right)$. Then by the FTC,
$g^{\prime}(x)=f\left(h_{2}(x)\right) h_{2}^{\prime}(x)-f\left(h_{1}(x)\right) h_{1}^{\prime}(x)=\cos \left((5 x)^{2}\right)(5)-\cos \left(\cos ^{2} x\right)(-\sin x)=5 \cos \left(25 x^{2}\right)+\sin x \cos \left(\cos ^{2} x\right)$.
Problem 62. If we are to apply the Riemann sum, we break up the unit interval $[0,1]$ into n pieces, each of length $1 / n$. We have the formula

$$
\int_{0}^{1} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x .
$$

It looks like we should take $f(x)=\sqrt{x}$ (and the right endpoint), for then we would have

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\frac{i}{n}} \cdot \frac{1}{n}
$$

which is what is given. Therefore the sum is

$$
\int_{0}^{1} \sqrt{x} d x=\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{1}=\frac{2}{3}
$$

Problem 66. For (a), we break up the real line as the function is defined. For $x<0, g(x)=\int_{0}^{x} f(t) d t=$ $\int_{0}^{x} 0 d t=0$. If $0 \leq x \leq 1$, then

$$
g(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{x}=\frac{x^{2}}{2}
$$

If $1<x \leq 2$, then

$$
g(x)=\int_{0}^{x} f(t) d t=\int_{0}^{1} t d t+\int_{1}^{x}(2-t) d t=g(1)+\left(2 t-\frac{t^{2}}{2}\right)_{1}^{x}=\frac{1}{2}+2 x-\frac{x^{2}}{2}-2+\frac{1}{2}=-\frac{x^{2}}{2}+2 x-1
$$

If $x>2$, then

$$
g(x)=\int_{0}^{x} f(t) d t=g(2)+\int_{2}^{x} 0 d t=-2+4-1=1
$$

Therefore

$$
g(x)= \begin{cases}0, & x<0 \\ \frac{x^{2}}{2}, & 0 \leq x \leq 1 \\ -\frac{x^{2}}{2}+2 x-1, & 1<x \leq 2 \\ 1, & x>2\end{cases}
$$

For (b), we have the following graphs of f and g, respectively:

Finally, for (c), we note that f is differentiable everywhere except at the corners, i.e. $x \neq 0,1,2$. However, g is differentiable everywhere, since $g^{\prime}(x)=f(x)$ by the FTC!

5.4: Indefinite Integrals and the Net Change Theorem

Problem 2.

$$
(x \sin x+\cos x+C)^{\prime}=\sin x+x \cos x-\sin x=x \cos x .
$$

Problem 4. Remembering that a is a constant and we are differentiating with respect to x, we have $\left(-\frac{\left(x^{2}+a^{2}\right)^{1 / 2}}{a^{2} x}+C\right)^{\prime}=-\frac{a^{2} x(1 / 2)\left(x^{2}+a^{2}\right)^{-1 / 2}(2 x)-\left(x^{2}+a^{2}\right)^{1 / 2}\left(a^{2}\right)}{a^{4} x^{2}}=-\frac{a^{2} x^{2} / \sqrt{x^{2}+a^{2}}-a^{2} \sqrt{x^{2}+a^{2}}}{a^{4} x^{2}}$.
Now cancel a^{2} from the top and bottom and simplify the numerator by multiplying top and bottom by $\sqrt{x^{2}+a^{2}}$:

$$
-\frac{x^{2}-\left(x^{2}+a^{2}\right)}{a^{2} x^{2} \sqrt{x^{2}+a^{2}}}=\frac{a^{2}}{a^{2} x^{2} \sqrt{x^{2}+a^{2}}}=\frac{1}{x^{2} \sqrt{x^{2}+a^{2}}} .
$$

Problem 22.

$$
\int_{0}^{4}(2 v+5)(3 v-1) d v=\int_{0}^{4}\left(6 v^{2}+13 v-5\right) d v=\left.\left(2 v^{3}+13 \frac{v^{2}}{2}-5 v\right)\right|_{0} ^{4}=128+104-20=212
$$

Problem 28.

$$
\int_{0}^{5}\left(2 e^{x}+4 \cos x\right) d x=\left.\left(2 e^{x}+4 \sin x\right)\right|_{0} ^{5}=2 e^{5}+4 \sin 5-2-0=2 e^{5}+4 \sin 5-2
$$

Problem 38.

$$
\int_{4}^{9}(\sqrt{x}+1 / \sqrt{x})^{2} d x=\int_{4}^{9}\left(x+2+\frac{1}{x}\right) d x=\left(\frac{x^{2}}{2}+2 x+\ln |x|\right)_{4}^{9}=\frac{81}{2}+18+\ln 9-(8+8+\ln 4)=\frac{85}{2}+\ln \frac{9}{4} .
$$

Problem 40. Break up the integral to get rid of the absolute value. Note that $\sin x \geq 0$ on this interval from $[0, \pi]$ and $\sin x \leq 0$ on $[\pi, 3 \pi / 2]$. Therefore

$$
\int_{0}^{3 \pi / 2}|\sin x| d x=\int_{0}^{\pi} \sin x d x+\int_{\pi}^{3 \pi / 2}-\sin x d x=(-\cos x)_{0}^{\pi}+(\cos x)_{\pi}^{3 \pi / 2}=(1-(-1))+(0-(-1))=2+1=3
$$

Problem 44. Since $y=\sqrt[4]{x}$, we have $x=y^{4}$. We integrate $x=y^{4}$ from $y=0$ to $y=1$, so therefore

$$
A=\int_{0}^{1} y^{4} d y=\left.\frac{y^{5}}{5}\right|_{0} ^{1}=\frac{1}{5}
$$

Problem 48. By the Net Change Theorem, $\int_{0}^{15} n^{\prime}(t) d t=n(15)-n(0)=n(15)-100$. This represents the increase in the bee population in 15 weeks. So $100+\int_{0}^{15} n^{\prime}(t) d t=n(15)$ represents the total bee population after 15 weeks.
Problem 54. For (a), we have displacement given by

$$
\int_{1}^{6} v(t) d t=\int_{1}^{6}\left(t^{2}-2 t-8\right) d t=\left(\frac{t^{3}}{3}-t^{2}-8 t\right)_{1}^{6}=(72-36-48)-(1 / 3-1-8)=-\frac{10}{3} \mathrm{~m}
$$

For (b), displacement is the absolute value of the distance travelled:

$$
\int_{1}^{6}|v(t)| d t=\int_{1}^{6}\left|t^{2}-2 t-8\right| d t
$$

Now $t^{2}-2 t-8=(t-4)(t+2)$ and this is ≥ 0 when $t>4$ or $t<-2$ and ≤ 0 for t in the interval [-2,4]. Therefore

$$
\begin{aligned}
\int_{1}^{6}\left|t^{2}-2 t-8\right| d t & =\int_{1}^{4}-\left(t^{2}-2 t-8\right) d t+\int_{4}^{6}\left(t^{2}-2 t-8\right) d t=-\left(\frac{t^{3}}{3}-t^{2}-8 t\right)_{1}^{4}+\left(\frac{t^{3}}{3}-t^{2}-8 t\right)_{4}^{6} \\
& =(-64 / 3+16+32)-(-1 / 3+1+8)+(72-36-48)-(64 / 3-16-32)=\frac{98}{3} \mathrm{~m}
\end{aligned}
$$

Problem 56. For $(\mathrm{a}), v^{\prime}(t)=a(t)=2 t+3$, so $v(t)=t^{2}+3 t+C$. Since $v(0)=C=-4, v(t)=t^{2}+3 t-4$. For (b), we have the distance travelled (as in 54(b))

$$
\begin{aligned}
\int_{0}^{3}\left|t^{2}+3 t-4\right| d t & =\int_{0}^{3}|(t+4)(t-1)| d t=\int_{0}^{1}-\left(t^{2}+3 t-4\right) d t+\int_{1}^{3}\left(t^{2}+3 t-4\right) d t \\
& =-\left(\frac{t^{3}}{3}+3 \frac{t^{2}}{2}-4 t\right)_{0}^{1}+\left(\frac{t^{3}}{3}+3 \frac{t^{2}}{2}-4 t\right)_{1}^{3} \\
& =(-1 / 3-3 / 2+4)+(9+27 / 2-12)-(1 / 3+3 / 2-4)=\frac{89}{6} \mathrm{~m}
\end{aligned}
$$

Problem 58. By the Net Change Theorem, the amount of water that flows from the tank is

$$
\int_{0}^{10} r(t) d t=\int_{0}^{10}(200-4 t) d t=\left(200 t-2 t^{2}\right)_{0}^{10}=2000-200=1800 \text { liters }
$$

Yeehaw!

